Разбираемся как работает кан-шина на примере учебной системы canbasic

Содержание

Неисправности

Поскольку CAN-интерфейс завязан со многими системами автомобиля, при поломке или некорректной работе одного из узлов в нем могут появиться неполадки. Их наличие отразится на функционировании основных агрегатов.

Признаки и причины

О появлении неисправностей могут сообщить такие «симптомы»:

  • на приборной панели загорелись одновременно несколько значков без причины — подушки безопасности, рулевое управление, давление в системе смазки и т. д.;
  • появился световой индикатор Check Engine;
  • на контрольном щитке отсутствует информация о температуре силового агрегата, уровне топлива в баке, скорости т. д.

Причины, по которым могут возникнуть неисправности в работе CAN-интерфейса:

  • обрыв проводки в одной из систем или повреждение электролиний;
  • короткое замыкание в работе агрегатов на батарею или землю;
  • повреждение резиновых перемычек на разъеме;
  • окисление контактов, в результате чего нарушается передача сигнала между системами;
  • разряд АКБ автомобиля либо падение величины напряжения в электросети, что связано с неправильным функционированием генераторной установки;
  • замыкание систем CAN-high либо CAN-low;
  • появление неисправностей в работе катушки зажигания.

Подробнее о поломках цифрового интерфейса и тестировании с использованием компьютера рассказал канал «KV Avtoservis».

Диагностика

Чтобы определить причину появления неполадок, потребуется тестер, рекомендуется использование мультиметра.

Процесс проверки:

  1. Диагностика начинается с поиска проводника витой пары КАН-шины. Кабель имеет черную либо оранжево-серую изоляцию. Первый является доминантным уровнем, а второй — второстепенным.
  2. С помощью мультиметра производится проверка величины напряжения на контактных элементах. При выполнении задачи зажигание нужно включить. Процедура тестирования позволит выявить напряжение в диапазоне от 0 до 11 вольт. На практике это обычно 4,5 В.
  3. Выполняется отключение зажигания. От аккумулятора отсоединяется проводник с отрицательным контактом, предварительно гаечным ключом надо ослабить зажим.
  4. Выполняется измерение параметра сопротивления между проводниками. О замыкании контактов можно узнать, если эта величина стремится к нулю. Когда диагностика показала, что сопротивление бесконечно, то в электролинии имеется обрыв. Проблема может заключаться непосредственно в контакте. Требуется более детально проверить разъем и все провода.
  5. На практике замыкание обычно происходит из-за поломки управляющих устройств. Для поиска вышедшего из строя модуля следует поочередно отключить от питания каждый блок и выполнить проверку величины сопротивления.

Пользователь Филат Огородников рассказал о диагностике КАН-шины с использованием осциллографа.

Плюсы и минусы CAN-шин

Преимущества, которыми обладает цифровой интерфейс:

  1. Быстродействие. Устройство может оперативно обмениваться пакетными данными между разными системами.
  2. Высокая устойчивость к воздействию электромагнитных помех.
  3. Все цифровые интерфейсы имеют многоуровневую систему контроля. Благодаря этому можно не допустить появления ошибок при передаче информации и ее приеме.
  4. При работе шина сама раскидывает скорость по каналам в автоматическом режиме. Благодаря этому обеспечивается эффективная работа электронных систем транспортного средства.
  5. Цифровой интерфейс является безопасным. Если к электронным узлам и системам автомобиля кто-то попытается получить незаконный доступ, шина автоматически заблокирует эту попытку.
  6. Наличие цифрового интерфейса позволяет упрощенно произвести монтаж охранной системы на машину с минимальным вмешательством в штатную бортовую сеть.

Минусы, которыми обладает CAN-шина:

  1. Некоторые интерфейсы имеют ограничения по объему информации, которая может передаваться. Этот недостаток будет весомым для современного автомобиля, «напичканного» электроникой. При добавлении дополнительных устройств на шину возлагается более высокая нагрузка. Из-за этого снижается время отклика.
  2. Все пакетные данные, которые передаются по шине, имеют определенное назначение. Для полезной информации отводится минимальная часть трафика.
  3. Если применяется протокол повышенного уровня, это станет причиной отсутствия стандартизации.

Неисправности

Хотя интерфейс CAN и хорошо защищен от помех, электрические неисправности стали для него серьезной проблемой. Объединение блоков в единую сеть сделало ее уязвимой. КАН-интерфейс на автомобилях стал настоящим кошмаром малоквалифицированных автоэлектриков уже по одной своей особенности: сильные скачки напряжения (например, зимний запуск на сильно разряженном аккумуляторе) способны не только «повесить» ошибку CAN-шины, обнаруживаемую при диагностике, но и заполнить память контроллеров спорадическими ошибками, случайного характера.

В результате на приборной панели загорается целая «гирлянда» индикаторов. И, пока новичок в шоке будет чесать голову: «да что же это такое?», грамотный диагност первым делом поставит нормальный аккумулятор.

Чисто электрические проблемы – это обрывы проводов шины, их замыкания на «массу» или «плюс». Принцип дифференциальной передачи при обрыве любого из проводов или «неправильном» сигнале на нем становится нереализуем. Страшнее всего замыкание провода, поскольку оно «парализует» всю шину.

Представьте себе простую моторную шину в виде провода, на котором «сидят в ряд» несколько блоков – контроллер двигателя, контроллер АБС, приборная панель и диагностический разъем. Обрыв у разъема автомобилю не страшен – все блоки продолжат передавать информацию друг другу в штатном режиме, невозможной станет только диагностика. Если оборвать провод между контроллером АБС и панелью, мы сможем увидеть сканером на шине только ее, ни скорость, ни обороты двигателя она показывать не будет.

А вот при обрыве между ЭБУ двигателя и АБС машина, скорее всего, уже не заведется: блок, не «видя» нужный ему контроллер (информация о скорости учитывается при расчете времени впрыска и угла опережения зажигания), уйдет в аварийный режим.

Если не резать провода, а просто постоянно подать на один из них «плюс» или «массу», автомобиль «уйдет в нокаут», поскольку ни один из блоков не сможет передавать данные другому. Поэтому золотое правило автоэлектрика в переводе на русский цензурный звучит как «не лезь кривыми руками в шину», а ряд автопроизводителей запрещает подключать к CAN-шине несертифицированные дополнительные устройства стороннего производства (например, сигнализации).

Благо подключение CAN-шины сигнализации не разъем в разъем, а врезаясь непосредственно в шину автомобиля, дают «криворукому» установщику возможность перепутать провода местами. Автомобиль после этого не то что откажется заводиться – при наличии контроллера управления бортовыми цепями, распределяющего питание, даже зажигание не факт что включится.

Источник

Режимы работы

Существует несколько режимов функционирования терминала:

  1. FMS — в нем автовладелец может узнать общий расход горючего, обороты, пробег транспортного средства, нагрузку на оси, температуру силового агрегата. Допускается получение данные об объеме горючего в баке. Для работы в данном режиме выполняется вход в меню выбора типа фильтров программы «Конфигуратор». Указывается тип режима FMS, скорость цифрового интерфейса, после чего нажимается кнопка «Применить».
  2. Режим прослушки используется для получения сообщений, передающий через цифровой интерфейс. Чтобы работать с ним, надо зайти в программе в настройки шины CAN и выбрать один из рабочих параметров. Это может быть скорость интерфейса или время ожидания, тип фильтра в данном случае не играет роли. После указания параметров «кликается» клавиша «Прослушать».
  3. Для привязки информации, полученной посредством прослушивания цифрового интерфейса, используются пользовательские фильтры. После прослушки данных надо выбрать тип фильтрующей технологии (для 11 или 29 бит). Расшифровка данных производится в соответствии с технической документацией.
  4. Режим тестирования OBD2 используется для сканирования скорости отправки информации, а также класса идентификатора. Чтобы запустить эту функцию, автовладельцу надо подключиться напрямую к цифровому интерфейсу или диагностическому разъему. Включение режима осуществляется посредством входа в меню «Настройка» и выбора опции «Тест OBD2». В результате терминалом начнется отправка запросов с конкретными идентификаторами на различных скоростях интерфейса. Во вкладке «Устройство» можно ознакомиться с извлеченной и расшифрованной информацией.

Инструкция по подключению сигнализации по CAN-шине

При монтаже противоугонной системы простой вариант ее соединения с бортовой сетью — связать охранную установку с цифровым интерфейсом. Но такой метод возможен при наличии КАН-шины в автомобиле.

Чтобы произвести установку автосигнализации и подключить ее к CAN-интерфейсу, необходимо знать место монтажа блока управления системой.

Если сигналку ставили специалисты, то надо обратиться за помощью с этим вопросом на СТО. Обычно устройство располагается за приборной панелью автомобиля или под ней. Иногда установщики ставят микропроцессорный модуль в свободное пространство за бардачком или автомагнитолой.

Для выполнения задачи потребуется:

  • мультиметр;
  • канцелярский нож;
  • изолента;
  • отвертка.

Пошаговые действия

Процедура подключения противоугонной установки к CAN-шине осуществляется так:

  1. Сначала надо убедиться, что все элементы охранного комплекса установлены и работают. Речь идет о микропроцессорном блоке, антенном модуле, сервисной кнопке, сирене, а также концевых переключателях. Если сигнализация имеет опцию автозапуска, надо убедиться в правильности монтажа этого устройства. Все элементы противоугонной установки подключаются к микропроцессорному блоку.
  2. Выполняется поиск основного проводника, идущего к CAN-шине. Он более толстый и его изоляция обычно окрашена в оранжевый цвет.
  3. Основной блок автосигнализации соединяется с данным контактом. Для выполнения задачи используется разъем цифрового интерфейса.
  4. Производится монтаж блока управления охранной системы, если он не был установлен. Его следует разместить в сухом и недоступном для посторонних глаз месте. После монтажа устройство надо качественно зафиксировать, иначе в процессе движения на него будут оказывать негативное воздействие вибрации. В результате это приведет к быстрой поломке модуля.
  5. Место соединения проводников тщательно изолируется, допускается использование термоусадочных трубок. Рекомендуется дополнительно обмотать изолентой провода. Это позволит увеличить их ресурс эксплуатации и не допустить стирания изоляционного слоя. Когда подключение будет выполнено, осуществляется проверка. Если возникли проблемы в передачи пакетных данных, с помощью мультиметра следует произвести диагностику целостности электроцепей.
  6. На завершающем этапе выполняется настройка всех каналов связи, в том числе дополнительных, если они имеются. Это позволит обеспечить бесперебойную работу охранной системы. Для настройки используется сервисная книжка, входящая в комплектацию противоугонной установки.

Пользователь Sigmax69 рассказал о соединении охранного комплекса с цифровым интерфейсом на примере автомобиля Хендай Солярис 2017.

Потребуется

Панель приборов «Итэлма» с навигацией может быть двух видов (внешне ничем не отличаются):

  • 2170-3801010-50 без CAN-шины;
  • 2170-3801010-60 с CAN-шины.

Они не взаимозаменяемы, поэтому перед покупкой следует определить, используется ли на вашем автомобиле CAN-шина или нет.

  • до 06.2012 года выпускались машины без CAN-шины;
  • снять комбинацию приборов и посмотреть артикул или на колодку с проводами (см. распиновку разъемов ниже).

Для Калины (ВАЗ 1117, 1118, 1119) — все машины без CAN-шины.

  • Правый подрулевой переключатель с джойстиком (каталожный номер: 1118-3709340-20);
  • Антенна (для установки на крышу): 1118-7903074.

Также можно купить готовые комплекты (приборка + антенна + переключатель):

  • для Лада Приора — 2170-3801010-55;
  • для Лада Калина 1 — 1118-3801010-55.

Система передачи данных по шине CAN

Логические состояния шин и шифрование

Для обмена данными шина CAN использует два состояния «доминантное» и «рецессив­ное», с помощью которых передаются ин­формационные биты. Доминантное состояние соответствует «0», а рецессивное — «1». Для шифрования передачи используется процесс NRZ (без возврата на ноль), в котором нулевое состояние не всегда возвращается в промежу­ток между двумя одинаковыми состояниями передачи и, соответственно, необходимый для синхронизации временной интервал между двумя фронтами может оказаться слишком большим.

В основном используется двухпроводной кабель, в зависимости от окружающих усло­вий, с витой или не витой парой. Две шинные линии называются CAN-H и CAN-L (рис. «Уровень напряжения передачи по CAN» ).

Двухпроводный кабель обеспечивает сим­метричную передачу данных, при которой биты передаются через обе шинные линии с использованием разных напряжений. Это уменьшает чувствительность к синфазным помехам, поскольку помехи влияют на обе линии и могут быть отфильтрованы путем создания разности (рис. «Фильтрация помех по шине CAN» ).

Однопроводный кабель представляет со­бой способ сокращения производственных затрат за счет экономии на втором кабеле. Однако общее подключение к массе, выпол­няющей функцию второго кабеля, должно быть доступно для этой цели всем пользова­телям шины. Поэтому однопроводный вари­ант шины CAN возможен только для системы связи с ограниченным монтажным простран­ством. Передача данных по однопроводному кабелю более чувствительна к излучаемым помехам — он не позволяет фильтровать импульсы помех так, как в двухпроводном кабеле. В результате на шинной линии тре­буется сигнал более высокого уровня. Это, в свою очередь, отрицательно сказывается на излучении помех. Поэтому необходимо снизить крутизну фронта импульсов сигна­лов шины по сравнению с двухпроводным кабелем. Это связано с уменьшением скоро­сти передачи данных. По этой причине одно­проводной кабель используется только для низкоскоростной шины CAN в области кузова и электроники для функций комфорта. На­пример, низкоскоростная шина CAN с двух­проводным кабелем в случае обрыва кабеля должна продолжать работать как однопрово­дная система. Однопроводное решение не описывается в спецификации CAN.

Уровни напряжения шины CAN

Высокоскоростные и низкоскоростные шины CAN используют разные уровни напряжения для передачи доминантных и рецессивных состояний. Уровни напряжения низкоско­ростной шины CAN показаны на рис. а, «Уровень напряжения передачи по CAN», а высокоскоростной — на рис. Ь, «Уровень напряжения передачи по CAN».

Высокоскоростная шина CAN в рецессив­ном состоянии на обеих линиях использует номинальное напряжение 2,5 В. В доминант­ном состоянии на CAN-H и CAN-L подается номинальное напряжение 3,5 В и 1,5 В, со­ответственно. В низкоскоростной шине CAN в рецессивном состоянии на CAN-H подается напряжение 0 В (максимум 0,3 В), на CAN-L — 5 В (минимум 4,7 В). В доминантном состоя­нии на CAN-H напряжение составляет не ме­нее 3,6 В, а на CAN-L не более 1,4 В.

Предельные значения

Для арбитражного метода в случае CAN важно, чтобы все узлы в сети видели биты идентификатора фрейма одновременно, чтобы узел, передавая бит, видел, передают ли их другие узлы. Задержки возникают из-за распространения сигнала в шине данных и обработки в трансивере

Таким образом, максимально допустимая скорость передачи данных зависит от общей длины шины. Стан­дарт ISO предусматривает скорость 1 Мбит/с для 40 м. У более длинных проводов возмож­ная скорость передачи данных примерно об­ратно пропорциональна длине провода. Сети с дальностью 1 км могут работать со скоро­стью 40 кбит/с.

Виды CAN-шин

Условно CAN-шины можно разделить между собой на два типа в соответствии с использующимися идентификаторами:

  1. КАН2, 0А. Так маркируются цифровые устройства, которые могут функционировать в 11-битном формате обмена данными. Этот тип интерфейсов по определению не может выявить ошибки на сигналы от модулей, работающих с 29 бит.
  2. КАН2, 0В. Так маркируются цифровые интерфейсы, функционирующие в 11-битном формате. Но ключевая особенность состоит в том, что данные об ошибках будут передаваться на микропроцессорные устройства, если обнаруживается идентификатор на 29 бит.

CAN-шины могут делиться на три категории в соответствии с видом:

  1. Для силового агрегата автомобиля. Если подключить к нему такой тип интерфейса, это позволит обеспечить быструю связь между управляющими системами по дополнительному каналу. Предназначение шины заключается в синхронизации работы ЭБУ двигателя с другими узлами. Например, коробкой передач, антиблокировочной системой и т. д.
  2. Устройства типа Комфорт. Такая разновидность цифровых интерфейсов используется для соединения всех систем данной категории. К примеру, электронной регулировки зеркал, подогрева сидений и т. д.
  3. Информационно-командные интерфейсы. Имеют аналогичную скорость передачи информации. Используются для обеспечения качественной связи между узлами, необходимыми для обслуживания транспортного средства. К примеру, между электронным блоком управления и навигационной системой или смартфоном.

О принципе действия, а также о разновидностях цифровых интерфейсов рассказал канал «Электротехника и электроника для программистов».

Визуальное программирование

Развитая поддержка шины CAN это не единственная особенность этих контроллеров, кроме этого CANNY имеют свою собственную среду программирования, CannyLab, но не «обычную», а визуальную, где весь процесс написания программ сводится к манипулированию готовыми структурными блоками, заданию их параметров и соединению входов и выходов этих блоков в определённой последовательности, в соответствии с алгоритмом решаемой задачи.

Ни одной строчки кода!

Хорошо это или плохо? На мой взгляд, это дело привычки. Мне, как человеку привыкшему к «традиционному» программированию, было непривычно манипулировать блоками, вместо написания строк кода. С другой стороны, существует множество приверженцев именно такого подхода к составлению алгоритмов и считается, что для инженеров и «не программистов» это наиболее простой и доступный метод программирования микроконтроллеров.

Мне, как минимум, было «прикольно» составлять программы таким образом и через некоторое время мне это стало даже нравиться. Возможно, что если продолжить этим заниматься, то через некоторое время уже написание кода покажется неудобным.

CannyLab является бесплатной средой разработки и вы можете свободно скачать её с сайта разработчиков, она также не требует специальной процедуры инсталляции — достаточно распаковать файл с архивом — и вы можете начинать работу.

Мифический герой

Разработка полностью отечественная — от идеи до сборки. Разве что часть компонентов микросхемы заказали за границей: наши заводы подобных не производят. Потенциальный интерес к устройству огромный. Сотрудники инжинирингового центра готовы взломать любой автомобиль и доказать его уязвимость.

Отсутствие громких заявлений мировых автоконцернов, что именно их машина умеет противостоять хакерам, косвенно свидетельствует о том, что защита требуется всем. И программисты МИФИ готовы дать автомобильному миру средство от вредоносных вирусов. Быть может, хоть на этом поприще мы окажемся впереди планеты всей. Дело за масштабными испытаниями и внедрением. А пока я лелею надежду, что автомобилисты получат эффективные средства защиты от преступников раньше, чем те выйдут на принципиально новый уровень.

Источник

Шина LIN. Сканирование “молчащих” блоков и датчиков

Как было описано в предыдущей статье, в структуре шины LIN есть Master узел и Slave узлы. Master опрашивает узлы Slave, а те ему отвечают. В большинстве случаев если просто подать питание на Slave и посмотреть что происходит на его выходе шины LIN, то мы ничего не увидим, поскольку Slave ожидает запрос или пакет от Master узла.

Master узлом как правило является какой-либо блок управления: Блок управления двигателем, салоном, креслами и т. д. А Slave узлы это различные цифровые датчики, приводы, блоки кнопок управления или джойстики.

Что же делать если стоит задача “оживить” Slave в отрыве от мастера? Например во время проведения ремонта с целью выяснить исправность Slave узла и вообще шины LIN.

Для решения этой задачи удобно использовать LIN адаптер LIN-K совместно с USB-CAN интерфейсом CAN-Hacker. Программное обеспечение нашего анализатора шины LIN позволяет автоматически искать запросы для Slave узлов сети LIN.

Блок управления стеклоподъемниками автомобиля LADA. Slave узел на шине LIN

В качестве примера рассмотрим работу с блоком управления стеклоподъемниками от автомобиля LADA Granta.

Блок управления стеклоподъемнками является Slave узлом в LIN шине автомобиля LADA, а Master узлом является блок управления комфортом, который отправляет запросы на Slave узлы, а те в свою очередь отвечают ему о своем состоянии. В частности блок управления стеклоподъемниками отвечает статусом нажатия кнопок.

Блок комфорта автомобиля LADA. Master на шине LIN

Если соединить эти блоки в сеть и параллельно подключить LIN анализатор LIN-K на скорости 9600 бод и будем нажимать кнопки на блоке стеклоподъемников, то мы увидим следующий обмен с пакетами имеющими >

Пакеты с данными: 00 00 00 C0 – говорят о том, что кнопки не нажаты, если же нули меняются на другие числа, например 20 02 00 С0 говорят о нажатии кнопок.

Теперь представим, что мастер узла в лице блока комфорта у нас нет, а запустить Slave – блок стеклоподъемников нужно. Для этого подадим питание на исследуемый блок и LIN адаптер и подключимся к выводу LIN.

Выберем в программе LIN-K виртуальный COM порт к которому подключен наш LIN адаптер, нажмем Connect. Затем установим скорость LIN 9600 бод и нажмем Open LIN.

Настроим LIN-K на передачу запросов в заданном диапазоне – функция Bombing

В такой конфигурации LIN-K будет передавать запросы узлу Slave в диапазоне всех возможных ID на шине LIN от 0 до 0x3C. С каждым ID будет передаваться по 10 запросов.

В случае если Slave прореагирует на отправленный запрос мы увидим этот факт в окне приема:

Как видно из скриншота Slave прореагировал на посылаемый ему запрос с >

Следует обратить внимание на то, что в передаваемых LIN анализатором ID автоматически рассчитываются биты защиты и значение ID отличается от значения в счетчике, например по счетчику а передаваемое значение с битами защиты будет равно =0x42

Далее мы можем убрать флаг Bombing и установить значение ID для Master запроса = 03 и мы будем получать ответы от “ожившего” блока кнопок

Источник

Протоколы на основе CAN

Стандарты шины CAN определяют только первые два уровня, физический уровень и уровень канала передачи данных, на основе модели OSI. Поскольку CAN не включает в себя задачи более высокого уровня, такие как адресация, управление доступом, транспортировка блоков данных размером больше кадра и т. д., появлялись протоколы более высокого уровня, основанные на CAN, особенно на прикладном уровне .

Следует упомянуть следующее:

  • ARINC 825 (для авиации)
  • CANaerospace (для авиации)
  • CAN Королевство
  • CANopen (для промышленной автоматизации)
  • КПКXCP
  • DeviceNet (для промышленной автоматизации)
  • EnergyBus (для электромобилей)
  • GMLAN ( Дженерал Моторс )
  • ИСО 15765-4
  • ISO 11783 или ISOBUS (для сельского хозяйства)
  • ИСО 14229
  • SAE J1939 (для большегрузных автомобилей)
  • ISO 11992 (для тяжелых прицепов)
  • МилКАН
  • NMEA 2000 (для судостроения)
  • ОСЕК
  • RV-C (для автомобилей для отдыха)
  • SafetyBUS p (для автоматизации производства)
  • Смарткрафт
  • Интеллектуальная распределенная система (SDS)
  • VSCP (для автоматизации зданий )

Description

Driver API for CAN Bus Peripheral (Driver_CAN.h)

The Controller Area Network Interface Bus (CAN) implements a multi-master serial bus for connecting microcontrollers and devices, also known as nodes, to communicate with each other in applications without a host computer. CAN is a message-based protocol, designed originally for automotive applications, but meanwhile used also in many other surroundings. The complexity of the node can range from a simple I/O device up to an embedded computer with a CAN interface and sophisticated software. The node may also be a gateway allowing a standard computer to communicate over a USB or Ethernet port to the devices on a CAN network. Devices are connected to the bus through a host processor, a CAN controller, and a CAN transceiver.

The CAN Driver API allows to implement CAN Interfaces that conform to the CAN specifications available from BOSCH:

  • CAN 2.0B: CAN Specification 2.0B (released Sep. 1991) which is now superseded by ISO 11898-1.
  • CAN FD: CAN with Flexible Data Rate introduced in 2012 (released April 17th, 2012).

Wikipedia offers more information about the CAN Bus.

CAN 2.0B** Every CAN CMSIS-Driver supports the CAN 2.0B standard

CAN 2.0B supports:

  • message can contain up to 8 data bytes
  • bitrates of up to 1Mbits/s
  • requests

CAN FD

Support for CAN FD depends on the hardware. A CMSIS-Driver that supports CAN FD has the capability data field fd_mode = 1, which can be retrieved with the function .

CAN FD supports:

  • message can contain up to 64 data bytes
  • faster data transfers with faster bitrate used during the data phase

CAN FD does not support requests.

Block Diagram

The CAN Driver API defines a CAN interface for middleware components. The CAN Driver supports multiple nodes, which are able to send and receive messages, but not simultaneously.

CAN Node Schematic

Как подключить сигнализацию по CAN-шине

Защита CAN-шины автомобиля от угона подразумевает ее подключение к сигнализации. Инструкция:

  1. Установите сигнализацию и подключите ее ко всем узлам.
  2. Найдите оранжевый кабель, он самый крупный, по нему обнаруживается CAN-шина.
  3. Присоедините к ней адаптер системы защиты.
  4. Установите девайс так, чтобы он был изолирован и зафиксирован.
  5. Проведите настройку каналов связи с узлами для полноценной защиты автомобиля.

Если достаточных для этого знаний у автолюбителя нет, то лучше обратиться в специализированный сервис.

Преимущества сигнализации с CAN-шиной

Основные «плюсы» установки шины для сигнализации:

  1. Справиться с установкой и программированием сможет любой автолюбитель, прочитавший инструкцию от производителя сигнализации.
  2. Узлы обмениваются данными между собой так быстро, что злоумышленники не смогут завладеть автомобилем.
  3. Внешние помехи не влияют на работоспособность системы.
  4. Доступны многоуровневые системы мониторинга и контроля. Это убережет сигнализацию от появления ошибок при передаче данных.
  5. Эффективная работа модуля обеспечивается его способностью распределять скорость по всем установленным каналам.
  6. Большой выбор. Автолюбитель сможет выбрать любую охранную систему с шиной и установить ее на свой автомобиль. В продаже присутствуют элементы защиты авто даже для старых отечественных машин.

Схема расположения элементов CAN

«Плюсов» у такой сигнализации много, но главный – противодействие угонщикам.

Недостатки сигнализации с CAN шиной

При всех положительных сторонах таких охранных систем есть и отрицательные:

  1. Ограничения на передачу данных. Количество узлов и приборов в современных автомобилях только увеличивается. И все это подключается к шине, что серьезно повышает нагрузку на этот элемент. Как итог такого воздействия – существенно изменяется время отклика.
  2. Не все данные, передающиеся по шине, полезны. Некоторые из них имеют только одно значение, которое не увеличивает безопасность движимой собственности.
  3. Нет стандартизации. Производители выпускают разную продукцию и от этого зависит сложность ее настройки.

«Минусов» существенно меньше, что объясняет высокую востребованность подобных систем.

Защита шины CAN

Защита CAN-шины автомобиля от угона подразумевает установку диодных сборок. Они предотвращают воздействие электростатических разрядов и выбросов напряжения. С ними исключено также перенапряжение при работе определенных процессов.

Взлом CAN-шины

Одна из таких сборок – SM24 CANA. Ее главное предназначение – рассеивание повторяющихся электростатических разрядов, если их уровень выше, чем записан в международном стандарте.

Подобные сборки выпускаются разными производителями, но главное требование к ним – прохождение сертификации. Причина такой строгости в возможности подключения к элементам управления «коробкой», двигателем и системами безопасности.

Главные преимущества описываемой защиты:

  • защита от электростатического разряда повышенного уровня – до 30 кВ;
  • сниженное динамическое сопротивление – до 0,7 ОМ;
  • минимизированный риск утраты данных;
  • пониженный показатель утечки тока;
  • возможность установки даже на старые отечественные автомобили.

Защита CAN-шины не обязательна, но она позволяет исключить стороннее воздействие на систему, а значит повышает сохранность движимого имущества. Поэтому ее установка все же рекомендуется.

CAN шина, как подключается автосигнализация к цифровой шине

Анализатор цифровой шины справляется не только со внутренними системами и устройствами автомобиля. Подключение внешних элементов –сигнализация, датчики, другие устройства, добавляет цифровому устройству больше нагрузки, но при этом его продуктивность остаётся прежней. Автосигнализация, которая имеет адаптер для подключения к цифровой шине устанавливается по стандартной схеме, а для того, чтобы подключиться к CAN необходимо пройти несколько простых шагов:

  1. Автосигнализация по стандартной схеме подключается ко всем точкам автомобиля.
  2. Владелец транспортного средства ищет оранжевый, толстый провод – он ведёт к цифровой шине.
  3. Адаптер сигнализации подключается к проводу цифровой шины автомобиля.
  4. Производятся необходимые закрепляющие действия –установка системы в надёжном месте, изоляция проводов, проверка правильности произведённого процесса.
  5. Настраиваются каналы для работы с системой, задаётся функциональный ряд.

Возможности современной цифровой шины велики, ведь виток из двух проводов объединяет в себе доступ до всех основных и дополнительных систем автомобиля. Это помогает избежать наличия большого количества проводов в салоне и упрощает работу всей системы. Цифровая шина работает по типу компьютера, а это в современном мире очень актуально и удобно. Устал платить за штрафы? Выход есть!

  • Абсолютно легально (статья 12.2);
  • Скрывает от фото-видеофиксации;
  • Подходит для всех автомобилей;
  • Работает через разъем прикуривателя;
  • Не вызывает помех в радиоприемнике и сотовых телефонах.

Узнать подробности

Сегментация CAN шины по функциональному назначению

Как правило разные, сегменты сети разделены специальным устройством, которое называется Гейтвей (Gateway, ZGW, ETACS, ICU) .
В роли гейтвея может выступать панель приборов (для простых автомобилей) или отдельный специальный модуль межсетевого интерфейса.
Гейтвей разделяет потоки данных в разных сегментах сети и обеспечивает связь сегментов сети работающих на разных скоростях.

ВАЖНО: На многих автомобилях (особенно VAG, MB, BMW) CAN шина в диагностическом разъеме OBD2 отделена от других участков сети при помощи гейтвея, поэтому подключившись к CAN шине OBD разъема невозможно увидеть поток данных. В этом случае можно увидеть только обмен между диагностическим инструментом и автомобилем во время процесса диагностики! Так же модулем гейтвеем оборудованы автомобили японских марок с 2021..2018 годов в зависимости от модели.

ОБЯЗАТЕЛЬНО изучайте схемы на исследуемый автомобиль, чтобы знать к какому сегменту сети Вы подключаетесь!. Схема ниже изображена в общем виде для упрощения понимания роли Гейтвея

Количество CAN шин и варианты включения блоков управления к тому или другому сегменту сети могут отличаться

Схема ниже изображена в общем виде для упрощения понимания роли Гейтвея. Количество CAN шин и варианты включения блоков управления к тому или другому сегменту сети могут отличаться.

CAN модуль (контроллер шины CAN) MCP2515

Модуль MCP2515 включает в себя CAN контроллер MCP2515, который представляет собой высокоскоростной CAN приемопередатчик. Соединение модуля MCP2515 с микроконтроллером осуществляется с помощью интерфейса SPI, поэтому его легко подключить ко всем микроконтроллерам с данным интерфейсом.

Начинающим изучение CAN-шины целесообразно начинать именно с этого модуля ввиду его простоты и легкости подключения к большинству современных микроконтроллеров.

Основные технические характеристики модуля MCP2515:

  • включает в себя высокоскоростной CAN приемопередатчик TJA1050;
  • размеры модуля: 40×28mm;
  • управление по интерфейсу SPI с возможностью подключения к CAN-шине нескольких устройств;
  • кварцевый генератор на 8 МГц;
  • сопротивление на концах 120 Ом;
  • включает независимый ключ, светодиодный индикатор, индикатор мощности;
  • поддерживает скорости передачи данных до 1 Мбит/с;
  • низкий потребляемый ток в режиме ожидания;
  • возможность подключения до 112 устройств (узлов).

Назначение контактов (распиновка) CAN модуля MCP2515 представлено в следующей таблице.

Наименование контакта Назначение контакта
VCC контакт питания 5 В
GND общий провод (земля)
CS SPI SLAVE select pin (Active low) (выбор ведомого)
SO SPI master input slave output lead
SI SPI master output slave input lead
SCLK контакт синхронизации SPI
INT контакт прерывания MCP2515

В данном проекте мы будем передавать данные, считываемые с датчика температуры и влажности DHT11 платой Arduino Nano, плате Arduino Uno с помощью CAN модуля MCP2515.

Добавить комментарий