Что такое дроссельная заслонка в машине
Содержание
Характерные симптомы неисправности
И так теперь давайте рассмотрим основные признаки которые указывают на неисправность дроссельной заслонки:
- Небольшое затруднение во время запуска двигателя;
- Чувствуются провалы или рывки во время функционирования двигателя;
- Достаточно маленькая мощность;
- Частое возникновение детонации;
- Проваливания, задерживания и подёргивания;
- Функционирование двигателя с небольшими перебоями;
- Увеличение топливного расхода;
- В системе выпускания выхлопных газов при переработке бензина возникает специфический бензиновый запах;
- Неустойчивость при функционировании двигателя, а во время работы на холодном ходу остановка;
- Иногда самовоспламеняется топливная смесь;
- Во впускном трубопроводе или глушителе слышны некие хлопки.
Если вы обнаружили, какую-то из вышеперечисленных неисправностей, но системой самодиагностики не определяется код поломки по датчику расположения дроссельной заслонки, не нужно делать поспешные выводы и менять его. В таком случае обнаруженные вами неисправности могут создаваться абсолютно другими причинами.
Чистка датчика/регулятора холостого хода(ДХХ) инструкция Шевроле Авео
ПРОБЛЕМЫ ДРОССЕЛЬНОЙ ЗАСЛОНКИ Chevrolet Aveo Т300, OPEL ASTRA J
Чистим впускной колектор- брызгаем с болоника и протираем тряпками везде где достанит рука.
Вот что вытащил я Посадочное место имелло вот такой вид Вид впускного колектора внутри.
Если дроссельный узел снимали не для замены, очистите загрязненный дроссельный узел жидкостью для чистки карбюратора. Сдвиньте пружинный фиксатор наконечника шланга системы вентиляции картера двигателя
Поэтому при данных неисправностях сначала попробуйте промыть дроссельную заслонку например, растворителем или специальным очистителем карбюратора в аэрозольной упаковке.
Если это не приведет к положительному результату, замените дроссельный узел. Слейте жидкость из системы охлаждения двигателя см. При известном навыке охлаждающую жидкость можно не сливать. Приготовьте подходящие по размеру пробки, которыми заглушите шланги сразу же после их отсоединения.
Потеря охлаждающей жидкости при таком способе будет незначительной. Ослабьте затяжку хомута крепления воздухоподводящего рукава к патрубку дроссельного узла и снимите рукав с патрубка.
Чистка Дроссельной Заслонки . Ее обучение после чистки.
Сдвиньте пружинный фиксатор наконечника шланга системы вентиляции картера двигателя Ослабьте хомут крепления шланга слива охлаждающей жидкости Для наглядности работа здесь и далее показана на снятой головке блока цилиндров.
Сожмите фиксатор наконечника шланга подвода охлаждающей жидкости После снятия шланга проверить его на загрезненность — уж больно быстро забивается 6.
Самый тонкий шланг который идёт во впускной коллектор, снимаем в месте соединения с колектором. Он там просто натянут на штуцер, но снимается тяжело. Так вот, все эти шланги очищаем , промываем и продуваем Для промывки я взял такой вот болончик для очистки карбюраторов -очень хорошо чистит, обязательно чтоб с балоном была тонкая трубочка Теперь находим РХХ, он чёрный пластиковый, расположен на впускном колекторе.
Откючаем от него разъём. И главное не потеряйте винтики.
Когда открутите винтики острожно вытаскивайте реле с посадочного места, там должно быть резиновое уплотняющее колечко, его тоже нужно вытащить. Вот что вытащил я Посадочное место имелло вот такой вид Вид впускного колектора внутри.
Интересно как почистить его в середине? Вот такой вид стал после снятия деталей Теперь берём много тряпок , болон для промывки, можно ещё взять бензин и другие моющии житкости которые моют, но не уничтожают деталь.
Берём РХХ акуратно моем ,протираем, продуваем. Много жидкости на него не брызгаем, бо может захлебнутся и умереть.
Причины неисправности датчика положения дроссельной заслонки
Прежде чем искать, какие причины приводят к поломке этого агрегата, необходимо отметить, что существует 2 типа таких датчиков:
Пленочно-резистивные. Их еще называют контактными.
Магнитно-резистивные, или бесконтактные.
Пленочно-резистивные датчики дроссельной заслонки ломаются чаще. Это связано с особым устройством прибора, который сопряжен с движением ползунка по резистивным тропам. У дорожек есть свой срок службы: когда он подходит к концу, они попросту изнашиваются, что приводит к выходу пленочно-резистивного датчика из строя. Иными обстоятельствами, которые приводят к поломке контактного датчика, являются:
слабый контакт или его отсутствие у ползунка. Наличие электрического контакта во многом зависит от состояния резистивного слоя на дорожке, который в процессе естественной эксплуатации запчасти постепенно выходит из строя. Контакты нарушаются, датчик перестает работать;
отсутствие опыления на основе, что препятствует нормальному передвижению ползунка. Это отражается на слабых показателях линейного напряжения, которые не повышаются;
выход из строя связующих элементов – шестеренок с привода ползунка;
разрывы комплектующих – соединительных проводов. При этом не имеет значения их тип. Оборваться и помешать работе датчика могут и питающие, и сигнальные элементы;
замыкание в электроцепи. Даже малейший сбой в работе электрической системы автомобиля может привести к негативным последствиям для датчика дроссельной заслонки, что непременно отразится на работе всей системы ДВС.
Поломка бесконтактных датчиков чаще всего связана с обрывом соединительных элементов – проводов, а также возникновением замыкания в электрической цепи. Отсутствие напыления на дорожках снижает риск появления неисправности из-за выхода из строя этих элементов.
Вне зависимости от того, какой датчик стоит на конкретном авто, проверить исправность датчика дроссельной заслонки можно одним и тем же методом. Проверку следует осуществлять с помощью спецприбора, который называется электронный мультиметр. Инструкция по проверке датчика положения дроссельной заслонки:
Активация процесса зажигания. Только при включении двигателя можно понять, все ли хорошо с датчиком, и как это отражается на работе всей системы ДВС.
Отделение контактов прибора от фишки. Далее следует взять мультиметр и соединить его с датчиком, чтобы определить, подходит ли ток к устройству. Проверка продолжается только в случае обнаружения электрической связи. Если контакт отсутствует, следует проверить соединительные элементы (проводку), чтобы найти место обрыва или определить провода, которые вышли из строя, что и привело к отсутствию напряжения в датчике положения дроссельной заслонки.
Проверка мультиметром. Если контакт есть, следует воспользоваться электроприбором, а именно: щуп мультиметра со значком «минус» установить на «массу», а тот, что со знаком «плюс» – на контакт с выходом.
Замер показателей. Следует помнить, что при измерении заслонка должна быть полностью закрыта, то есть когда педаль газа отпущена. В таком состоянии нормальный показатель измерения должен составлять не более 0,7 Вольт. И, напротив, если выжать педаль акселератора, то есть открыть заслонку, то показатели на мультиметре должны приблизиться к значению 4 Вольта.
Вращать заслонку. Чтобы понять, как ведет себя датчик в динамике, следует открыть заслонку, плавно вращая сектор. Значение показателей должно увеличиваться по мере вращения устройства.
Примечательно, что проблемы датчика зачастую связаны с низким качеством соединительных элементов – проводов, которые выходят из строя в 2-3 раза быстрее окончания срока их эксплуатации. Этим обычно «грешат» автомобили российского производства, так как аналогичная проблема у владельцев иномарок встречается в 4 раза реже.
Электронная дроссельная заслонка: как она устроена, и как её ремонтировать?
Тренд автомобильного инжиниринга всех последних лет – планомерное отстранение водителя от непосредственного управления машиной. Пока, слава богу, мы не дошли массово до потери жесткой связи наших рук и ног с поворачивающимися колесами и тормозами, но к тому все явно идет… Как минимум, ни один автомобиль в наши дни уже не выпускается без электронной дроссельной заслонки, при которой мы не отдаем прямую команду дросселю «больше воздуха!» правой ногой через тросик, а высказываем пожелание блоку управления двигателем, который уже сам отправляет команду на заслонку. Хорошо это или плохо, и как с этим жить?
История вопроса
П ринято считать, что так называемый E-газ – это технология последнего примерно десятилетия. В чистом виде – да, но интегрированный электропривод в дроссельных заслонках появился гораздо раньше – еще в 80-х. В те годы на оси заслонки с одной стороны располагался сектор газа, связанный с педалью акселератора классическим тросиком (да-да, «колесико», которое приводится в движение тросиком от педали, называется «сектором газа»!), а с другой стороны ось заслонки соединялась через шестеренчатую передачу с небольшим электромотором.
Собственно, на поведение машины при движении моторчик влияния не оказывал – связь с ногой водителя была олдскульная, механическая и четкая: как надавишь, так и поедешь! А вступал в работу электромотор только в режиме холостого хода, корректируя степенью приоткрытия заслонки обороты при прогреве и после прогрева, а также чуть добавляя газку при включении мощных потребителей электроэнергии и крутящего момента – кондиционера летом, ГУРа на морозе, разных обогревов и т.п. Чуть позже функции моторчика в дросселе расширились – при практически неизменной конструкции добавилось электронных команд: он стал управлять не только оборотами холостого хода, но и оборотами в движении – при включении круиз-контроля и при активации антипробуксовочной системы.
Сейчас же все достигло «апофигея технологичности» – механическая связь заслонки с педалью газа исчезла в принципе, и все команды – как от ноги водителя, так и от сервисных систем – дроссель получает лишь при посредничестве блока управления двигателем. Причин тому – три:
- Экологические требования;
- Рост экономии топлива;
- Удобство в реализации множества современных функций автомобиля.
Электронный дроссель в наши дни
Итак, прямая связь дроссельной заслонки с педалью упразднена полностью и окончательно. Как я уже говорил, нажатием на педаль мы отправляем сигнал в блок управления, а тот в свою очередь анализирует обстановку и множество параметров, а затем отдает команду на подачу воздуха. При этом надо сказать, что за добрый десяток лет развития тандема электронной педали газа и электронного дросселя в его современном понимании система благополучно переросла ряд детских болезней – как чисто физических, так и софтовых.
Изнашивающиеся скользящие контакты датчиков положения заслонки вытеснила бесконтактная индуктивная связь, появилось множество новых функций – не настолько явных, чтобы занять строчку в техническом описании автомобиля, но в комплексе достаточно важных.
Например, ход педали газа стал нелинейным, что позволило лучше контролировать автомобиль во время начала движения: при мощном моторе (где заслонка имеет большой диаметр) исчез риск избыточно резко рвануться вперед при легком касании педали – электронный дроссель в первой четверти хода педали газа реагирует намеренно вяло.
E-газ позволяет наиболее оптимально провести разгон на авто с турбированным двигателем, в значительной мере борясь с турбоямой и обеспечивая более ровное ускорение с низов. Е-газ поможет и при режиме «педаль в пол», когда в случае классической тросовой заслонки первые мгновения идет неоптимальное сгорание смеси, и теряются секунды на разгоне. Конечно же, нельзя не упомянуть эффективную систему автоматического управления тягой мотора для борьбы со сносами и проскальзываниями ведущих колес.
При этом, правда, нужно отметить, что поведение электронного дросселя на бюджетных машинах по-прежнему серьезно отличается от среднеценовых и, тем более, премиальных автомобилей. В «бюджетках» E-газ, к сожалению, излишне туповат, задумчив и не способствует получению истинного удовольствия от драйва.
Да еще порой и на безопасность влияет отрицательно – дроссель с неоптимальным управляющим программным обеспечением реагирует на нажатие педали с задержкой, выдавая момент на колесах тогда, когда уже поздно. При отсутствии систем стабилизации зимой на скользком покрытии и в повороте такая реакция машины способна свести на нет ваши традиционные навыки зимнего вождения и создать аварийную ситуацию.
Почему дроссельную заслонку лучше чистить на СТО
Чистка электронной дроссельной заслонки своими руками не самая хорошая идея. Некоторые дроссельные заслонки не будут правильно работать после чистки, им необходима адаптация, для которой нужно специальное дорогостоящее оборудование. Обычно рядовой автолюбитель не имеет такого оборудования, и сделать сам адаптацию он не сможет.
В самом процессе чистке, ничего сложного нет, но так как сейчас автомобили высокотехнологичные, они сами регулируют обороты холостого хода. Когда на стенках дросселя со временем образуется нагар, ЭБУ автомобиля это учитывает, и открывает дроссель на нужное положение, с учетом этого нагара. А когда смывается слой этого нагара, то происходит сбои и обороты на холостом ходу начинают плавать, так как ЭБУ уже адаптировался к заслонке на которой присутствует нагар.
Для того чтобы исправить ситуацию, нужно скинуть адаптацию заслонки. Делается это с помощью специального диагностического оборудования, которое есть только в сервисных центрах либо на специализированной технической станции под марку Вашего автомобиля.
Коды бортового компьютера и их значение
Теперь поговорим о распространенных кодах ошибок, которые можно выявить путем диагностики бортового компьютера вашего ВАЗ 2114. Следует учитывать, что речь идет об электронике, которая также порой способна работать некорректно. Но, как показывает практика, в подавляющем большинстве случаев коды ошибок на бортовом компьютере соответствуют реальным проблемам на автомобиле.
Схема подключения БК
Изучать каждую ошибку невероятно долго. Потому в данной таблице мы собрали наиболее распространенные, с которыми владельцы ВАЗ 2114 встречаются регулярно.
Коды | Описание проблемы |
0102, 0103 | Неправильный уровень сигнала датчика массового расхода воздуха. |
0112, 0113 | Неверный сигнал датчика температуры впускного воздуха. Требуется его замена |
0115 – 0118 | Неправильный сигнал датчика температуры охлаждающей жидкости. Требуется его замена |
0122, 0123 | Помехи или неверный сигнал от датчика контроля положения дроссельной заслонки. Рекомендуется заменить датчик |
0130, 0131 | Не работает датчик кислорода |
0135 – 0138 | Не работает устройство для нагрева датчика кислорода. Требуется замена |
0030 | Зафиксированы поломки в работе или обрыв в цепи управления нагревателя датчика кислорода до нейтрализатора. |
0201 – 0204 | В цепи управления форсунками обнаружен обрыв |
0300 | Выявлены случайные или постоянные пропуски зажигания. Машина может не сразу завестись |
0301 – 0304 | В цилиндрах двигателя обнаружены пропуски зажигания |
0325 | В цепи устройства детонации произошли сбои |
0327, 0328 | Датчик детонации вышел из строя. Требуется его замена |
0335, 0336 | Обнаружена неисправность датчика положения коленчатого вала. Устройство требуется заменить |
0342, 0343 | Вышел строя датчика фаз. Устройству требуется замена |
0422 | Неисправен нейтрализатор |
0443 – 0445 | Не работает клапан продувки адсорбера. Требуется замена устройства |
0480 | Не работает вентилятор охлаждения. Требуется замена устройства |
0500, 0501 , 0503, 0504 | Вышел из строя датчик скорости. Устройство подлежит замене |
0505 – 0507 | Регулятора холостого хода работает со сбоями, которые влияют на количество оборотов (более низкие или более высокие). Обнаружение такой ошибки свидетельствует о необходимости замены регулятора |
0560, 0562, 0563 | Наблюдаются сбои в подаче напряжения сети. Нужна более тщательная диагностика, которая выявит точные необходимые для замены участки в цепи. |
0607 | Канал детонации не работает |
1115 | Цепь нагрева датчика кислорода работает с перебоями |
1135 | В цепи нагрева датчика кислорода был замечен обрыв, возможно, произошло короткое замыкание. Датчик подлежит замене |
1171, 1172 | Уровень газа потенциометра не соответствует норме |
1500 | Обнаружен обрыв в цепи управления устройства бензонасоса |
1509 | Электрическая цепь управления элементом холостого хода перегружена. |
1513, 1514 | Бортовым компьютером был зафиксирован обрыв в цепи устройства холостого хода. |
1541 | Произошел обрыв в цепи управления реле бензонасоса |
1570 | Антипробуксовочная система получила обрыв в цепи |
1600 | Данные об антипробуксовочной системе не поступают на бортовой компьютер |
1602 | Является одним из наиболее встречаемых кодов при диагностике БК на неисправности. Означает пропадание напряжения бортовой сети на электронном блоке управления |
1606, 1616, 1617 | Обнаружена поломка датчика определения неровного дорожного полотна |
1612 | Обнаружена неисправность сброса электронного блока управления |
1620 | Неполадки в работе постоянного запоминающего устройства |
1621 | Поломка оперативного запоминающего устройства. |
1689 | В том случае, если при диагностике появился эта комбинация цифр, бортовой компьютер может показывать неверные коды ошибок. |
0337, 0338 | Ошибки в функционировании элемента контроля положения коленчатого вала либо обрыв в цепи. |
0481 | Сломался второй вентилятор системы охлаждения. Устройство требует замены |
0615 – 0617 | В цепи реле стартера обнаружены обрывы или короткое замыкание |
1141 | Вышло из строя устройство нагрева первого после нейтрализатора датчика кислорода |
230 | Реле бензонасоса вышло из строя и не подлежит ремонту. Устройство необходимо в ближайшее время заменить |
263, 266, 269, 272 | Эти коды обозначают поломку драйвера первой, второй, третьей либо четвертой форсунок – нужна замена элементов. |
640 | Данная комбинация свидетельствует об обрыве в цепи лампы CheckEngine |
Изучив коды ошибок, вы сможете понять, что именно происходит с вашим автомобилем, чем объясняется его некорректное поведение, и какие действия вам следует предпринимать в ближайшее время.
Сброс ошибки двигателя check ВАЗ 21099, 2110, 2111, 2112, 2113, 2114, 2115, Калина, Приора, Гранта
Загрузка …
Характеристика датчика положения дроссельной заслонки
Предназначение датчика заключается в регулировке объема воздушного потока, который поступает в мотор. Этот воздух используется для образования горючей смеси.
Где расположен датчик в авто?
Чтобы при необходимости выполнить диагностику устройства, автовладельцу надо знать, где находится ДПДЗ. Контроллер устанавливается в моторном отсеке. Его можно увидеть сбоку от дроссельной магистрали на оси самой заслонки.
Расположение контроллера на дросселе
Конструкция устройства
Конструктивно устройство включает в себя следующее:
- Корпус контроллера. Этот компонент выполнен из термостойкого стеклопластика. Корпус оснащается двумя фланцами, которые используются для фиксации контроллера к дроссельному узлу.
- Соединительное устройство, оснащенное тремя контактами. Этот компонент объединен с корпусом контроллера.
- Резистивное устройство, выполненное из керамики.
- Токосъемный элемент. Эта составляющая предназначена для обеспечения электрического контакта с резистивной деталью.
- Цанговый зажим, оснащается шлицем.
- Резиновая прокладка. Используется для монтажа контроллера на ось дроссельного узла.
Назначение датчика положения дроссельной заслонки
Сам контроллер отвечает за корректное выявление положения заслонки на дроссельном узле. Его показания влияют на работу системы подачи топлива. Силовой агрегат в соответствии со значениями устройства выполняет регулировку объема поступаемого бензина при определенном режиме функционирования. ДПДЗ используется для преобразования углового положения заслонки дросселя в напряжение постоянного тока.
Особенности работы устройства:
- Данные, которые передает контроллер, позволяют вычислить величину открытия заслонки. Поступающая на управляющий модуль информация обеспечивает расчет основных параметров управления силовым агрегатом. Причем данные определяются с учетом типа езды машины.
- Само по себе устройство представляет потенциометр, оснащенный токосъемником. Последний используется для перемещения по установленному радиусу сектора, составляющего от 0 до 80 градусов. Ось данного конструктивного элемента при монтаже прибора должна быть связана с приводом дроссельного узла.
- Параметр выходного сопротивления потенциометра может меняться с учетом нажатия на педаль газа. В зависимости от ее положения изменяется и степень открытия заслонки узла.
- Питание контроллера производится посредством подачи стабилизированного напряжения. Величина исходит от управляющего модуля и должна составлять в районе 5 вольт. Допускается отклонение в размере 0,1 В в большую или меньшую сторону.
Технические параметры устройства
Основные технические свойства контроллеров ДПДЗ:
- Напряжение для питания устройства подается на два вывода — 1 и 2.
- Величина сопротивления, которое образуется между выводами 1 и 2, составляет от 1,8 до 2 кОм.
- Параметр открытия полностью закрытой заслонки узла — от 0 до 2%.
- Величина напряжения, которое подается на выходы под номерами 3 и 2 при закрытой заслонке составляет от 0,25 до 0,65 вольт.
- Величина открытия заслонки узла составляет более 90 градусов.
- Параметр напряжения, которое подается на 3 и 2 вывода при полном дросселе, составляет от 3,9 до 4,7 вольт.
- Число полных циклов активации устройства при его работе — не меньше одного миллиона.
- Градуировочное свойство зависимости параметра напряжения на выходе от угла поворота обладает линейным характером. Оно измеряется в диапазоне от 0 до 100 градусов. Напряжение составляет от 0,25 до 4,8 вольт. Значение наклона характеристики варьируется в районе 48 мВ.
- Параметр рабочей зоны контроллера находится в линейной области характеристики в диапазоне от 10 до 90 градусов. Это соответствует величине открытия заслонки узла на угол от 0 до 100 градусов. Значение наклона варьируется в районе 39 мВ.
Разновидности
Существует два основных вида устройств:
- Датчики пленочно-резистивные. Такой тип контроллеров обычно ставится штатно при производстве авто. Срок эксплуатации пленочно-резистивных устройств в среднем составляет примерно 55 тыс. км. Но по факту они выходят из строя чаще.
- Бесконтактный тип устройств. Такие ДПДЗ функционируют на основе магнитно-резистивного явления, используется эффект Холла. Цена бесконтактных датчиков выше, но срок эксплуатации огромный. Эти приборы более надежные, поэтому редко выходят из строя.
Андрей Серомолотов показал, как с бесконтактным ДПДЗ работает машинный двигатель.
Режимы отказа
Механической связи между педалью акселератора и дроссельной заслонкой с электронным управлением дроссельной заслонкой нет. Вместо этого положение дроссельной заслонки (то есть количество воздуха в двигателе) полностью контролируется программным обеспечением ETC через электродвигатель. Но простое открытие или закрытие дроссельной заслонки путем отправки нового сигнала на электродвигатель является условием разомкнутого контура и приводит к неточному управлению. Таким образом, в большинстве, если не во всех существующих системах ETC используются системы обратной связи с обратной связью, такие как ПИД-регулирование , посредством чего ЭБУ сообщает дроссельной заслонке, что нужно открывать или закрывать определенную величину. Датчики положения дроссельной заслонки постоянно считываются, а затем программное обеспечение вносит соответствующие корректировки для достижения желаемой мощности двигателя.
Существует два основных типа датчиков положения дроссельной заслонки (TPS): потенциометр или бесконтактный датчик Холла (магнитное устройство). Потенциометр является удовлетворительным способом для некритичных приложений , таких как регулировка громкости на радио, но так как он имеет контакт стеклоочистителя трется элементом сопротивления, грязь и износа между стеклоочистителем и резистором может вызвать ошибочные показания. Более надежным решением является магнитная муфта, которая не имеет физического контакта и никогда не будет выходить из строя из-за износа. Это коварный сбой, поскольку он может не проявлять никаких симптомов, пока не произойдет полный сбой. У всех автомобилей с TPS есть так называемый «аварийный режим». Когда автомобиль переходит в безвыходный режим, это происходит потому, что ускоритель, управляющий компьютер двигателя и дроссельная заслонка не разговаривают друг с другом понятным для них способом. Компьютер управления двигателем отключает сигнал к двигателю положения дроссельной заслонки, и набор пружин в дроссельной заслонке устанавливает его на быстрый холостой ход, достаточно быстрый, чтобы включить передачу, но не настолько быстро, чтобы движение было опасным.
Некоторые подозревали, что программные или электронные сбои в ETC ответственны за предполагаемые случаи непреднамеренного ускорения . В серии расследований, проведенных Национальным управлением безопасности дорожного движения США (NHTSA), не удалось разобраться во всех зарегистрированных инцидентах непреднамеренного ускорения в автомобилях Toyota и Lexus 2002 года и более поздних моделей. В отчете от февраля 2011 года, опубликованном группой из НАСА (которая изучила исходный код и электронику модели Camry 2005 года по запросу NHTSA), не исключены программные сбои в качестве потенциальной причины. В октябре 2013 года первое присяжное, которое заслушало доказательства исходного кода Toyota (от свидетеля-эксперта Майкла Барра (инженер-программист) ), признало Toyota виновной в гибели пассажира в результате непреднамеренного столкновения с ускорением в сентябре 2007 года в Оклахоме.
Как почистить электронную дроссельную заслонку, не снимая с автомобиля
Специалисты рекомендуют проводить обслуживание дроссельных заслонок с электронным управлением не реже 1 раза в год или через каждые 20 тыс. км пробега. Процедуру чистки заслонки лучше выполнять перед наступлением осенних дождей, чему есть логичное объяснение. Дело в том, что из-за повышенной влажности поступающего воздуха отложения грязи на деталях привода, оси и заслонке размягчаются. Из-за этого заслонка залипает, что приводит к невозможности контролировать обороты двигателя и может стать причиной аварии.
На большинстве автомобилей зарубежного и отечественного производства привод электронной педали газа установлен непосредственно перед впускным коллектором. Доступность механизма и простота его обслуживания позволяют провести профилактику буквально за 15-20 минут.
Для этого вам понадобятся:
- очиститель карбюратора (заменяется бензином, керосином, дизтопливом и т. д.);
- силиконовая смазка в виде спрея;
- ветошь;
- отвёртка с плоским или крестообразным жалом (в зависимости от типа винтов, которые используются для крепления патрубка подачи воздуха);
- кисточка с жёсткой щетиной или зубная щётка;
- защитные перчатки.
Работу лучше выполнять последовательно – так вы избежите ошибок и будете уверены, что сделали все правильно:
Воспользовавшись отвёрткой, ослабьте хомуты крепления патрубка подачи воздуха и отсоедините гофрированный шланг от корпуса электронного акселерометра.
Нажав на дроссельную заслонку, поверните её на 90 градусов и проведите внешний осмотр. Грязь и сажа на стенках корпуса — достаточное основание, чтобы немедленно приступить к чистке. Смолянистые и сажистые отложения в первую очередь забивают зазор, необходимый для работы двигателя на холостом ходу. Из-за этого обороты становятся нестабильными или же силовой агрегат и вовсе глохнет по причине прекращения подачи воздуха. Кроме того, касание заслонки к толстому слою нагара вызывает ее заедание и способствует усиленному износу пластиковых шестерён и других деталей привода.
Застопорите дроссель в открытом положении. Для этого между заслонкой и внутренней стенкой корпуса поместите подходящий по толщине предмет из дерева либо пластика – например, ручку той же отвёртки.
Приступая к чистке узла, обильно смочите моющим средством внутренние стенки и заслонку
Отдельное внимание уделите тем местам дроссельной камеры, сквозь которые проходит ось заслонки – скапливающиеся там смолянистые отложения как раз и являются причиной подклинивания узла вращения. В итоге дроссель поворачивается рывками и делает управление автомобилем некомфортным
Выдержав 10-15 минут для размягчения засоров, их удаляют при помощи щёточки
При необходимости процесс многократно повторяют, добиваясь полной очистки дросселя. Имейте в виду, что на некоторых моделях авто стенки дроссельной камеры покрываются специальным молибденовым покрытием. Чрезвычайно гладкий слой способствует ламинарному течению воздуха в канале и препятствует оседанию сажи. Не путайте это покрытие с нагаром и не старайтесь его удалить. Напротив, применяйте щадящие методы очистки и откажитесь от жёсткой щётки в пользу мягкой фланелевой тряпочки.
Добившись от стенок внутренней камеры мягкого, ровного блеска, очистите торцевую и заднюю сторону дроссельной заслонки.
Насухо протрите детали и поверхности ветошью. Дополнительно продуйте узел сжатым воздухом.
После очистки дроссельной заслонки, чтобы электронная педаль газа работала мягко и плавно, нанесите силиконовую смазку на ось, заслонку и ту часть дроссельной камеры, к которой она примыкает.
Присоедините воздуховод и затяните хомуты его крепления.
После вмешательства в узел изменятся параметры положения дроссельной заслонки, поэтому в некоторых случаях проводят её обучение. Если обороты холостого хода начинают самопроизвольно изменяться («плавать», как говорят автомеханики), то обнулите энергозависимую память контроллера, на короткое время отсоединив «плюсовую» клемму от аккумуляторной батареи.
Ещё кое-что полезное для Вас:
И последнее, о чем хотелось бы напомнить: при первом запуске не нажимайте на педаль газа до тех пор, пока мотор не прогреется. Обеспечивая работу двигателя с номинальными оборотами в широком температурном диапазоне, вы позволите контроллеру адаптироваться к изменившимся условиям и установить оптимальные значения настроек холостого хода. В дальнейшем это даст возможность эксплуатировать автомобиль без каких-либо неожиданностей со стороны дроссельного узла.