Принцип работы инжекторного двигателя

Содержание

Устройство инжектора

Основная задача системы питания инжекторного двигателя заключается в обеспечении подачи оптимального количества бензина в двигатель при разных режимах работы. Подача бензина в двигатель осуществляется с помощью форсунок, которые установлены во впускном трубопроводе.

Устройство системы питания инжектора:

1. Электробензонасос – устанавливается в модуле, который располагается в топливном баке. Модуль также включает в себя такие дополнительные элементы, как топливный фильтр, датчик уровня бензина и завихритель.

Электробензонасос предназначен для нагнетания бензина из топливного бака в подающий топливопровод. Управление электробензонасосом осуществляется с помощью контроллера через реле.

2. Топливный фильтр – предназначен для очистки топлива от грязи и примесей, которые могут привести к неравномерной работе двигателя, неустойчивой работе инжектора, загрязнению форсунок. В инжекторных системах к качеству топлива предъявляются высокие требования.

3. Топливопроводы – служат для подачи топлива от бензонасоса к рампе и обратно от рампы в топливный бак. Соответственно существует прямой и обратный топливопроводы.

4. Рампа форсунок с топливными форсунками – конструкция рампы обеспечивает равномерное распределение топлива по форсункам. На топливной рампе располагаются форсунки, регулятор давления топлива и штуцер контроля давления в топливной системе инжектора.

5. Регулятор давления топлива – предназначен для поддержания оптимального перепада давления, который способствует тому, что количество впрыскивания топлива зависит только от длительности впрыска. Излишки топлива регулятор подает обратно в бак.

Как работает система питания инжекторного двигателя?

Для стабильной работы двигателя необходимо обеспечить сбалансированное поступление топливовоздушной смеси в камеру сгорания. Приготовление топливовоздушной смеси происходит в впускном трубопроводе, благодаря смешиванию бензина с воздухом. Контроллер с помощью управляющего импульса открывает клапан форсунки и путем изменения длительности импульса регулирует состав топливовоздушной смеси. Регулятор давления топлива поддерживает перепад давления топлива постоянным, соответственно количество топлива, что подается пропорционально времени, при котором форсунки находятся в открытом состоянии. Контроллер поддерживает оптимальное соотношение топливовоздушной смеси путем изменения длительности импульсов. Если длительность импульса увеличивается – смесь обогащается, если уменьшается – смесь обедняется.

Сравнение систем топливоподачи

Если вкратце подвести итоги, то разница между карбюратором и инжектором заключается в следующем:

  1. Первый позволяет всасывать двигателю горючую смесь через систему калиброванных отверстий, второй принудительно подает топливо в цилиндры посредством форсунок.
  2. Управление карбюратором – полностью механическое. Только на последних модификациях появились электромагнитные клапаны, работающие от примитивных контроллеров принудительного холостого хода (ПХХ). Инжекторной подачей горючего полностью управляет электроника.
  3. Инжектор представляет собой топливную рампу с форсунками, чье количество равно числу цилиндров. Карбюратор – это сложный механический агрегат, состоящий из множества мелких деталей.
  4. Форсунки инжектора стоят в непосредственной близости от камер сгорания либо вмонтированы в них. Карбюратор прикручен к общему коллектору, распределяющему смесь по цилиндрам.
  5. Бензин для карбюрации подается насосом, работающим от привода коленчатого вала. Рампа инжектора получает горючее от электрического бензонасоса, погруженного в бак.

Невзирая на сложность конструкции и обилие мелких элементов, карбюратор проще обслужить своими руками. Автолюбитель может самостоятельно разобрать агрегат, почистить жиклеры, заменить мембраны или настроить уровень бензина в поплавковой камере.

Не так легко с инжектором – найти неполадки электронной схемы или датчиков гораздо сложнее. Но здесь играет роль надежность системы – карбюратор требует обслуживания 1 раз за 20 тыс. км пробега, а форсунки желательно чистить с интервалом 40–50 тыс. км. Срок службы датчиков составляет не менее 50 тыс. км, за это время карбюратор придется разобрать дважды. Учтите, что в процессе эксплуатации нередко засоряются жиклеры и приходят в негодность диафрагмы.

По эксплуатационным характеристикам инжектор тоже выигрывает и вот почему:

  • благодаря принудительному впрыску облегчается холодный запуск мотора;
  • по той же причине легче заводится изношенный двигатель с пониженной компрессией, который не в состоянии вытянуть горючее из карбюратора;
  • электроника обеспечивает более точную дозировку и соотношение бензина с воздухом в смеси, а это дает прирост мощности двигателя и снижение расхода горючего.

По указанным причинам водители автомобилей, оснащенных инжектором, никогда не вернутся обратно к карбюратору, а молодое поколение вообще о нем не знает. Устаревший способ топливоподачи сохраняется лишь на некоторых спортивных машинах и отечественных авто с большим пробегом.

Частые неисправности инжектора

Так как инжектор является сложной многокомпонентной системой, со временем отдельные элементы могут выходить из строя. Главной задачей инжектора является максимально возможная эффективность сгорания топлива, которая достигается благодаря поддержанию строго определенного состава рабочей смеси топлива и воздуха. В результате любой сбой в работе электронных датчиков приводит к дисбалансу в работе всей инжекторной системы, могут плавать обороты на холостом ходу или в движении, двигатель может троить или не заводиться, отмечается изменение цвета выхлопа и т.д.

В отдельных случаях ЭБУ может перевести мотор в аварийный режим. Силовой агрегат в такой ситуации не набирает обороты, на приборной панели горит «check» и т.п. Еще одной причиной неисправностей инжектора является загрязнение фильтрующих элементов в системе топливоподачи или самих инжекторных форсунок в результате использования бензина низкого качества. Для поддержания работоспособности топливный фильтр нужно своевременно менять. Не меньше внимания, особенно на автомобилях с пробегом более 50-70 тыс. км, заслуживает сетка-фильтр бензонасоса. Указанную сеточку бензонасоса рекомендуется менять или чистить.

Также желательно один раз в несколько лет мыть топливный бак параллельно замене или очистке указанной сетки-фильтра грубой очистки топливного насоса.  Отметим, что важно определять и устранять неисправность инжектора своевременно, так как сбои в его работе могут существенно ухудшить общее состояние ДВС и привести к другим поломкам. Что касается засорения топливных форсунок, в этом случае двигатель хуже заводится, теряет мощность и начинает расходовать больше топлива

Нарушение формы факела распыла топлива (особенно в моторах с прямым впрыском) приводит к локальным перегревам, детонации двигателя, прогарам клапанов и т.д.

Также форсунки могут «лить» топливо, то есть не закрываться после прекращения импульса от ЭБУ. В этом случае избытки топлива попадают в камеру сгорания, затем могут проникать в выпускную систему и в систему смазки двигателя через неплотности в местах установки поршневых колец. В таких ситуациях сильно страдает весь двигатель, так как бензин разжижает масло и смазка нагруженных деталей ухудшается. Наличие топлива в выхлопной системе выводит из строя каталитический нейтрализатор (катализатор), который очищает отработавшие газы от вредных соединений.

Для предотвращения неисправностей инжектора форсунки необходимо периодически очищать. Дело в том, что наличие фракций и примесей в бензине постепенно загрязняет инжекторы, что и снижает их производительность, а также нарушает качество распыла топлива. Почистить форсунки можно двумя способами: со снятием или прямо на машине. Процедура очистки инжекторных форсунок на автомобиле предполагает то, что через инжекторы пропускается специальная промывочная жидкость для чистки инжектора.

Способ заключается в том, что от топливной рампы отсоединяется топливная магистраль, после чего вместо бензонасоса в систему начинает качать промывочную жидкость специальный компрессор вместо бензонасоса. Еще одним вариантом чистки инжектора является очистка со снятием форсунок в ультразвуковой ванне или на специальном промывочном стенде. Что касается ультразвука, форсунки помещаются в специальный аппарат или ванну, где волновые колебания «разбивают» отложения. Промывка форсунок со снятием на стенде представляет собой процедуру, когда имитируется работа форсунок в двигателе, при этом вместо бензина через них пропускается промывочная жидкость. 

Принцип действия системы непосредственного впрыска

Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:

  • послойное ;
  • стехиометрическое гомогенное ;
  • гомогенное.

Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов) на всех режимах работы двигателя.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. На бедной гомогенной смеси двигатель работает в промежуточных режимах.

При послойном смесеобразовании дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря. Впрыск топлива производится в зону свечи зажигания в конце такта сжатия. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.

Рабочий процесс поддерживается движением воздуха в цилиндрах. В зависимости от нагрузочного и скоростного режимов регулируется интенсивность движения воздуха, при этом, обеспечивается создание гомогенной или послойной смеси.

Гомогенное стехиометрическое смесеобразование происходит при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа. Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания.

Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска. Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%.

Причины и признаки плохой работы форсунок на дизеле и инжекторе

Очистка топливной системы дизельного или бензинового двигателей автовладельцы считают базовой операцией, которая обеспечивает нормальное функционирование силового агрегата.

С некачественным топливом сталкиваются до 90% автовладельцев, поэтому им знакомы отложения на игольчатом клапане форсунок. Чем плотнее этот слой, тем выше вероятность сбоев в работе топливной системе.

Об этом свидетельствует целая группа признаков:

  • при каждой попытки добавит газу ТС дёргается;
  • топливные затраты увеличиваются в разы;
  • на холостом ходу мотор нестабилен;
  • затруднённый запуск мотора;
  • при выкручивании видно, что свечи грязные, несмотря на недавнюю смену;
  • скорость падает без видимых на то причин;
  • датчики попеременно сбоят, выдавая разные ошибки, которых на самом деле не существует.

Для того, чтобы двигатель не вышел из строя, важна профилактика. Мастера рекомендуют производить её, ориентируясь на пробег. Максимально допустимая граница – 40 000 километров.

Очистители форсунок для бензиновых моторов и дизелей при всём своём разнообразии делятся всего на 2 категории, каждая из которых имеет свои особенности.

Растворители

Этот вариант – самый распространённый и эффективный. Принцип действия растворителей прост:

  • нейтрализация углеродных отложений;
  • разбивка их на мелкие фракции.

Маленькие частицы свободно выходят через выхлопную систему, оставляя элементы системы чистыми.

В состав подобных средств входит полиэфирамин. Он является базовым действующим веществом, к которому производитель добавляет ряд присадок и вспомогательных компонентов.

Моющие средства

Моющие составы менее популярны. Мастера и автовладельцы часто спорят на счёт их эффективности и не могут прийти к единому мнению. Большинство уверены в том, что моющие жидкости не проводят полную очистку системы – они снимают только часть нагара, создавая опасную иллюзию чистоты. Особенно актуально это для сильно загрязнённых элементов, которые давно не чистились.

Устройство и принцип работы инжекторной системы впрыска

Второе название систем впрыска бензиновых моторов – инжекторная. Основная ее особенность заключается в точной дозировке топлива. Достигается это путем использования в конструкции форсунок. Устройство инжекторного впрыска двигателя включает в себя две составляющие – исполнительную и управляющую.

В задачу исполнительной части входит подача бензина и его распыление. Она включает в себя не так уж и много составных элементов:

  1. Бак.
  2. Насос (электрический).
  3. Фильтрующий элемент (тонкой очистки).
  4. Топливопроводы.
  5. Рампа.
  6. Форсунки.

Но это только основные компоненты. Исполнительная составляющая может в себя включать еще ряд дополнительных узлов и деталей – регулятор давления, систему слива излишков бензина, адсорбер.

В задачу указанных элементов входит подготовка топлива и обеспечение его поступления к форсункам, которыми и осуществляется их впрыскивание.

Принцип работы исполнительной составляющей прост. При повороте ключа зажигания (на некоторых моделях – при открытии водительской двери) включается электрический насос, который качает бензин и заполняет им остальные элементы. Топливо проходит очистку и по топливопроводам поступает в рампу, которая соединяет собой форсунки. За счет насоса топливо во всей системе находится под давлением. Но его значение ниже, чем на дизелях.

Открытие форсунок осуществляется за счет электрических импульсов, подаваемых с управляющей части. Эта составляющая системы впрыска топлива состоит из блока управления и целого комплекта следящих устройств – датчиков.

Эти датчики отслеживают показатели и параметры работы – скорость вращения коленчатого вала, количества подаваемого воздуха, температуры ОЖ, положения дросселя. Показания поступают на блок управления (ЭБУ). Он эту информацию сравнивает с данными, занесенными в память, на основе чего определяется длина электрических импульсов, подаваемых на форсунки.

Электроника, используемая в управляющей части системы впрыска топлива, нужна, чтобы высчитать время, на которое должна открыться форсунка при том или ином режиме работы силового агрегата.

Виды инжекторов

Но отметим, что это общая конструкция системы подачи бензинового мотора. Но инжекторов разработано несколько, и каждая из них обладает своими конструктивными и рабочими особенностями.

На автомобилях применяются системы впрыска двигателя:

  • центрального;
  • распределенного;
  • непосредственного.

Центральный впрыск считается первым инжектором. Его особенность заключается в использовании только одной форсунки, которая впрыскивала бензин во впускной коллектор одновременно для всех цилиндров. Изначально он был механическим и никакой электроники в конструкции не использовалось. Если рассмотреть устройство механического инжектора, то она схожа с карбюраторной системой, с единственной разницей, что вместо карбюратора использовалась форсунка с механическим приводом. Со временем центральную подачу сделали электронной.

Сейчас этот тип не используется из-за ряда недостатков, основной из которых — неравномерность распределения топлива по цилиндрам.

Распределенный впрыск на данный момент является самой распространенной системой. Конструкция этого типа инжектора расписана выше. Ее особенность заключается в том, что топливо для каждого цилиндра подает своя форсунка.

В конструкции этого вида форсунки устанавливаются во впускном коллекторе и располагаются рядом с ГБЦ. Распределение топлива по цилиндрам дает возможность обеспечить точную дозировку бензина.

Непосредственный впрыск сейчас является самым совершенным типом подачи бензина. В предыдущих двух типах бензин подавался в проходящий поток воздуха, и смесеобразование начинало осуществляться еще во впускном коллекторе. Этот же инжектора по конструкции копирует дизельную систему впрыска.

В инжекторе с непосредственной подачей распылители форсунок располагаются в камере сгорания. В результате компоненты топливовоздушной смеси здесь запускаются в цилиндры по отдельности, и уже в самой камере они смешиваются.

Особенность работы этого инжектора заключается в том, что для впрыскивания бензина требуется высокие показатели давления топлива. И его создание обеспечивает еще один узел, добавленный в устройство исполнительной части – насос высокого давления.

Причины отказа, связанные с датчиками инжектора.

Датчик коленчатого вала (датчик коленвала).

При полном отказе этого датчика автомобиль скорее всего, даже не заведётся. Отказ датчика коленчатого вала неисправность достаточно редкая, но всё же встречается. Датчик может давать неверные показания, в случае если он неплотно прикручен к корпусу мотора. От вибрации он может менять свое положение в посадочном месте, что крайне недопустимо. При увеличении расстояния между датчиком и задающим диском (насечки, на которые срабатывает датчик) начинаются сбои в работе двигателя. Косвенным признаком необходимости проверки датчика коленчатого вала служит отсутствие зажигания. Именно импульсы с датчика коленвала использует ЭБУ для расчета момента подачи искры и впрыска топлива. Это значит, что искра может отсутствовать не только из-за неисправности системы зажигания, но и из-за отказа датчика коленчатого вала.


Датчик коленчатого вала

Датчик положения распредвала.

Вторая причина неисправности инжекторного мотора. При сбоях в его работе или при поломке форсунки двигатель переключается в асинхронный режим подачи смеси. Это значит, что смесь в цилиндры впрыскивается не зависимо от того, в каком положении и такте находится поршень. В таких случаях как правило возрастает расход топлива и загорается лампа Check Engin.


Датчик положения распредвала

Датчик температуры охлаждающей жидкости ДТОЖ.

Лампа Check Engin загорится в таком случае или при обрыве провода датчика или при коротком замыкании. этого датчика. Если же датчик сильно врёт и показывает неправильную температуру, то автомобиль может и вовсе не завестись, причём причина проста.

Представьте, что истинная температура двигателя +20°C, а датчик показывает -20°C. Что происходит в таком случае? ЭБУ даёт команду на впрыск большего количества топлива, думая, что мотор холодный. В результате происходит перенаполнение цилиндров топливом и двигатель просто захлёбывается бензином. Даже если автомобиль и завелся, с неисправным датчиком температуры будет повышенный расход топлива.


Датчик температуры охлаждающей жидкости ДТОЖ

Следует учитывать, что на автомобиле могут быть установлены два и больше датчика температуры ОЖ. Один из них дает показания для ЭБУ, второй – на приборную панель (в некоторых авто панель берёт показания из ЭБУ). Внимательно изучите какой датчик в вашем автомобиле, где стоит и за что каждый из них отвечает.

Датчик кислорода (лямбда зонд).

При поломке датчика кислорода будет повышенный расход топлива, могут появиться перебои в работе двигателя. Датчик чаще всего продолжает работать, но его показания отличаются от реальных. В результате чего ухудшается расход и общая динамика машины. Могут появиться перебои в работе двигателя. В большинстве случаев, в память ЭБУ заноситься код ошибки, при этом загорается лампа, сигнализирующая о неисправности инжектора – Check Engin.


Датчик кислорода (лямбда зонд)

Датчик массового расхода воздуха – ДМРВ.

Машина работает с перебоями, плохо запускается двигатель, глохнет на ходу или при сбросе педали газа? Все эти причины могут являться причиной неисправности датчика расхода воздуха. Если мотор не заводиться как обычно, а заводиться только с нажатием педали газа, то причина может быть в ДМРВ. Этот датчик показывает сколько воздуха поступает в двигатель. ЭБУ в свою очередь, основываясь на показаниях, рассчитывает, сколько необходимо подать топлива в цилиндры.


Датчик массового расхода воздуха – ДМРВ

Если датчик исправен, то следует проверить подсос воздуха после него. Так как в таком случае реальное количество воздуха от замеренного будет отличаться. Вообще для инжектора подсос воздуха – одна из самых распространенных проблем. В ЭТОЙ статье подробно описано как легко найти и устранить подсос воздуха самому.

Датчик положения дроссельной заслонки – ДПДЗ.

Если автомобиль “не отзывчив” на педаль газа, плавают или самопроизвольно меняются обороты, неустойчивый холостой ход, то причиной неисправности может быть ДПДЗ. Автомобиль может даже не запуститься, если ДПДЗ даёт неверные показания.


Датчик положения дроссельной заслонки – ДПДЗ

Представьте, что вы запускаете двигатель, не нажимая на педаль газа, как и положено, а датчик показывает ЭБУ что педаль нажата на половину. Конечно же ЭБУ увеличивает количество впрыскиваемого топлива, считая, что вы нажали на педаль и нужно поддать газку. Как итог – залитые цилиндры, автомобиль глохнет, либо не заводиться совсем. Лампа Check Engin в таком случае может и не загореться, ведь датчик работает, он просто даёт неверные показания.

Порядок работы

Да, на смену карбюратору пришел инжектор. Он на порядок эффективней своего предшественника. Таким моторам предписывается улучшенный разгон, экономия топлива, неплохие экологические параметры. Это достигается без ручного регулирования и иных манипуляций.

Принцип действия этого устройства в топливной системе основан на подаче бензина, смешанного с воздухом, сквозь специальную форсунку. Их располагают в коллекторе впуска, систему называют моновпрыском. Из-за своих недостатков она успела несколько отойти в прошлое. Второй вариант расположение форсунок возле впускных цилиндрических клапанов. Этот вид системы называется распределенным впрыском. Они могут находиться на головке цилиндра. Это прямой впрыск, который используется часто.

Топливо и воздух подаются сразу в камеру. Система распределенного впрыска разделяется на несколько типов:

  • одновременный – имеющиеся форсунки горючее подают все вместе;
  • парно-параллельный – приоткрываются парами, на впрыск и на выпуск. Данный метод используют при запуске силовой установки;
  • фазированный – раскрывается перед впрыскиванием;
  • прямой – топливо-воздушная смесь впускается сразу в ресивер.

Чтобы происходили впрыски топлива, его подводит к распылению давление, создаваемое электрическим бензонасосом. Импульсные сигналы подаются бортовым компьютером. Протяженность импульса и партия бензина или солярки для каждого впрыска определяются по данным, которые поступают с датчиков читки информации функционирования мотора.

Добавить комментарий