Ток короткого замыкания и его расчет. ударный ток короткого замыкания

Содержание

Что такое короткое замыкание?

Определение и особенности.

Короткое замыкание (short-circuit) — это случайный или преднамеренно созданный проводящий путь между двумя или более проводящими частями, вызывающий уменьшение разности электрических потенциалов между этими проводящими частями до нуля или значения, близкого к нулю (определение согласно ГОСТ 30331.1-2013 ).

Харечко Ю.В. в своей книге дополняет:

Причины возникновения короткого замыкания.

Харечко Ю.В. в своей книге описывает причины возникновения короткого замыкания следующим образом:

В качестве примера, на рисунке 1 показан путь протекания тока замыкания на землю Iз для распространенной системы TN-C-S, который возник при коротком замыкании между фазным и нейтральным проводниками в электроустановке здания. При этом, максимальное значение тока замыкания на землю в системе TN-C-S равно току однофазного короткого замыкания между фазным и нейтральным проводниками.

Рис. 1. Путь протекания тока замыкания на землю в системе TN-C-S (на основе рисунка 2 из автора Харечко Ю.В и Харечко В.Н)

Короткое замыкание также может быть результатом действий, совершаемых персоналом при монтаже и эксплуатации электроустановки здания, когда по ошибке соединяют между собой проводящие части, которые в нормальных условиях находятся под разными электрическими потенциалами. Например, ошибочное электрическое соединение между собой фазного и нейтрального проводников или двух фазных проводников разных фаз какой-то электрической цепи переменного тока, полюсного и среднего проводников или двух полюсных проводников электрической цепи постоянного тока неминуемо приводит к короткому замыканию.

Частные виды коротких замыканий.

В стандарте МЭК 60909‑0 также определены следующие термины, характеризующие частные виды короткого замыкания:

  1. короткое замыкание между линиями – случайный или преднамеренный проводящий путь между двумя или более линейными проводниками с присоединением к земле или без него;
  2. короткое замыкание линии на землю – случайный или преднамеренный проводящий путь в системе с глухозаземленной нейтралью или в системе с нейтралью, заземленной через полное сопротивление, между линейным проводником и локальной землей.

В электрических системах переменного тока первому термину соответствует термин «двухфазное короткое замыкание», посредством которого идентифицируют замыкание между двумя фазными проводниками разных фаз. Применительно к электрическим системам постоянного тока применяют термин «двухполюсное короткое замыкание», с помощью которого определяют замыкание между двумя полюсными проводниками. Аналогом второго термина является термин «короткое замыкание на землю».

Источник

Понятие «короткое замыкание»

Короткое замыкание – это соединение двух точек электрической цепи с различными потенциалами, что не предусмотрено нормальным режимом работы цепи и приводит к критичному росту силы тока в месте соединения.

Таким образом, КЗ приводит к образованию разрушительных токов, превышающих допустимые величины. Что способствует выходу приборов из строя и повреждениям проводки. Для того, чтобы понять, что может спровоцировать этот процесс, нужно детально разобраться в процессах, происходящих при коротком замыкании.


По закону Ома сила тока (I) обратно пропорциональна сопротивлению (R)

Пример применения закона Ома к лампе накаливания мощностью в 100 Вт, подключенную к электросети в 220В. Здесь можно с помощью закона Ома рассчитать величину тока для нормального режима работы и короткого замыкания. Сопротивление источника и электропроводки проигнорируем.


Электрическая схема нормального режима работы (a) и короткого замыкания (b)

Вот пример нормальной цепи, по которой ток течет от источника к лампе накаливания. На схеме ниже изображен этот процесс.


Пример нормальной цепи, ток течет от источника к лампе

А теперь, представим, что произошла поломка, из-за которой в цепь попал дополнительный проводник.


Дополнительный проводник замыкает цепь

Сопротивление проводников стремится к нулю. Вот почему большая часть электрического тока после замыкания сразу потечет через дополнительный проводник, как бы избегая лампы накаливания с высоким сопротивлением. Результатом будет некорректная работа прибора, потому, что он не получит достаточно тока. И это еще не самый опасный вариант.

Как известно, по закону Ома сила тока обратно пропорциональна сопротивлению. Когда давление в цепи падает в результате короткого замыкания — на несколько порядков возрастет сила тока. По закону Джоуля – Ленца при росте силы тока увеличивается выделение тепла.

При многократном росте силы тока проводники мгновенно нагреваются. А теперь представим, что в сети нет предохранителей либо они не сработали достаточно быстро. В результате проводники плавятся, а изоляция начинает гореть. Зачастую, так возникают пожары в результате короткого замыкания.

Виды коротких замыканий


Схемы кз

Короткие замыкания в быту:

  • однофазные – происходит, когда фазный провод замыкается на ноль. Такие КЗ случаются чаще всего. Обозначен, как однофазное с землей К(1)
  • двухфазные – ( К2)происходит, когда одна фаза замыкается на другую, относится к несимметричным процессам. Есть еще 2-х фазное с землей К (1,1)в системах с заземленной нейтралью;
  • трехфазные – происходит, когда замыкаются сразу три фазы. Самый опасный вид КЗ. Это единственный вид короткого замыкания, при котором не происходит перекос фаз, процесс протекает симметрично;

Вот типичная картина последствий короткого замыкания: оплавленная или сгоревшая изоляция, запах гари, следы оплавления или горения внутри электрического прибора.


Последствия короткого замыкания в электрощите многоэтажного дома

В реальных условиях короткое замыкание происходит в таких ситуациях:

  • Повреждение изоляции проводников. Это может произойти из-за изношенности изоляции, а так же механического воздействия на неё. Жилы кабеля замыкаются напрямую или через корпус оборудования.
  • Некорректное подключение электроприборов к сети. Данный случай характеризуется допущением ошибки мастера или владельца квартиры из-за чего и происходит короткое замыкание.
  • Попадание в электрический прибор воды. Конечно же нельзя допускать попадание воды на электроприборы, ведь она является хорошим проводником электричества и замыкает контакты.

В обустройстве быта короткое замыкание происходит во время ремонта стен, если случайно повредить проводку. Также аварии случаются в квартирах и домах со старой проводкой. В результате чрезмерного нагревания она повреждается в следствие воздействия воды или грызунов.

Выбрать автомат по мощности нагрузки

Для выбора автомата по мощности нагрузки необходимо рассчитать ток нагрузки, и подобрать номинал автоматического выключателя больше или равному полученному значению. Значение тока, выраженное в амперах в однофазной сети 220 В., обычно превышает значение мощности нагрузки, выраженное в киловаттах в 5 раз, т.е. если мощность электроприемника (стиральной машины, лампочки, холодильника) равна 1,2 кВт., то ток, который будет протекать в проводе или кабеле равен 2,4 А(1,2 кВт*5=6,0 А). В расчете на 380 В., в трехфазных сетях, все аналогично, только величина тока превышает мощность нагрузки в 2 раза.

Можно посчитать точнее и посчитать ток по закону ома I=P/U — I=1200 Вт/220В =5,45А. Для трех фаз напряжение будет 380В. Можно посчитать еще точнее и учесть cos φ — I=P/U*cos φ.

Коэффициент мощности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.

Численно коэффициент мощности равен косинусу этого фазового сдвига или cos φ

Косинус фи возьмем из таблицы 6.12 нормативного документа СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»

Значение Cos φ в зависимости от типа электроприемника

Примем наш электроприемник мощностью 1,2 кВт. как бытовой однофазный холодильник на 220В, cos φ примем из таблицы 0,75 как двигатель от 1 до 4 кВт. Рассчитаем ток I=1200 Вт / 220В * 0,75 = 4,09 А.

Теперь самый правильный способ определения тока электроприемника — взять величину тока с шильдика, паспорта или инструкции по эксплуатации. Шильдик с характеристиками есть почти на всех электроприборах.

Общий ток в линии(к примеру розеточной сети) определяется суммированием тока всех электроприемников. По рассчитанному току выбираем ближайший номинал автоматического автомата в большую сторону. В нашем примере для тока 4,09А это будет автомат на 6А.

Очень важно отметить, что выбирать автоматический выключатель только по мощности нагрузки является грубым нарушением требований пожарной безопасности и может привести к возгоранию изоляции кабеля или провода и как следствие к появлению пожара. Необходимо при покупке учитывать еще и сечение провода или кабеля

По мощности нагрузки более правильно выбирать сечение проводника. Требования по выбору изложены в основном нормативном документе для электриков под названием Правила Устройства Электроустановок.В нашем случае, для домашней электросети, достаточно рассчитать ток нагрузки, как указано выше, и в таблице ниже выбрать сечение проводника, при условии что полученное значение ниже длительно допустимого тока соответствующего его сечению.

Как образуется короткое замыкание

Как мы помним из учебника физики за 8 класс, закон Ома для участка цепи определяется по формуле:

где

I – сила тока в цепи, А

U – напряжение, В

R – сопротивление, Ом

Давайте рассмотрим вот такую схему

Если мы подключим настольную лампу EL к источнику тока Bat и замкнем ключ SA, то вольфрамовая нить лампы начнет разогреваться под тепловым воздействием тока. В этом случае значительная часть электрической энергии преобразуется в световую и тепловую.

А теперь покончим с лирическими отступлениями и замкнем два провода, которые идут на лампочку, через толстый провод AВ

Что будет дальше, если мы замкнем контакты ключа SA?

В результате ток пойдет по укороченному пути, минуя нагрузку. Короткий путь в данном случае и есть провод AB. Сопротивление провода АВ близко к нулю. В результате наша схема преобразуется в делитель тока. Согласно правилу делителя тока, если нагрузки соединены параллельно, то через нагрузку с меньшим сопротивлением побежит большая сила тока, а через нагрузку с большим значением сопротивления – меньшая сила тока. Так как провод АВ обладает почти нулевым сопротивлением, то через него потечет большая сила тока, согласно опять же закону Ома:

Как я уже сказал, в режиме КЗ сила тока достигает критических значений, превышающих допустимые для данной цепи.

Расчет токов короткого замыкания

Сегодня хочу вашему вниманию представить методику расчета токов короткого замыкания. Самое главное без всякой воды и каждый из вас сможет ей воспользоваться, приложив минимум усилий, а некоторые из вас получат и мою очередную программу, с которой считать будет еще проще.

Это уже вторая статья, посвященная токам короткого замыкания

В первой статье я обратил ваше внимание на защиту протяженных электрических сетей и то, что в таких сетях, порой, не так просто подобрать защиту от токов короткого замыкания. Для того и проектировщик, чтобы решать подобные вопросы

Теорию по расчету токов короткого замыкания можно найти в следующих документах:

2 РД 153-34.0-20.527-98 (Руководящие указания по расчету токов короткого замыкания и выбору элетрооборудования).

3 А.В. Беляев (Выбор аппаратуры, защит и кабелей в сетях 0,4кВ).

В интернете я не нашел, где все четко было бы расписано от «А» до «Я».

Думаю вы со мной согласитесь, что токи короткого замыкания не так просто рассчитать, поскольку проектировщик не всегда досконально владеет всей необходимой информацией. Данный метод расчета является упрощенным, т.к. в нем не учитываются сопротивления контактов автоматических выключателей, предохранителей, шин, трансформаторов тока.

Возможно, позже все эти сопротивления я учту, но, на мой взгляд, эти значения на конечный результат влияют незначительно.

Последовательность расчета токов короткого замыкания.

1 Сбор исходных данных по трансформатору:

Uкз — напряжение короткого замыкания трансформатора, %;

Рк — потери короткого замыкания трансформатора, кВт;

Uвн – номинальное напряжение обмоток ВН понижающего трансформатора; кВ;

Uнн (Ел) – номинальное напряжение обмоток НН понижающего трансформатора; В;

Еф – фазное напряжение обмоток НН понижающего трансформатора; В;

Sнт – номинальная мощность трансформатора, кВА;

Zт – полное сопротивление понижающего трансформатора током однофазного к.з., мОм;

Активные и индуктивные сопротивления трансформаторов 6 (10)/0,4кВ, мОм

2 Сбор исходных данных по питающей линии:

Тип, сечение кабеля, количество кабелей;

L – длина линии, м;

Хо – индуктивное сопротивление линии, мОм/м;

Zпт – полное сопротивление петли фаза-ноль от трансформатора до точки к.з., измеренное при испытаниях или найденное из расчета, мОм/м;

Полное удельное сопротивление петли фаза-ноль для кабелей или пучка проводов

3 Другие данные.

Куд – ударный коэффициент.

После сбора исходных можно приступить непосредственно к вычислениям.

Активное сопротивление понижающего трансформатора, мОм:

Активное сопротивление трансформатора

Индуктивное сопротивление понижающего трансформатора, мОм:

Индуктивное сопротивление трансформатора

Активное сопротивление питающей линии, мОм:

Индуктивное сопротивление питающей линии, мОм:

Полное активное сопротивление, мОм:

Полное индуктивное сопротивление, мОм:

Полное сопротивление, мОм:

Ток трехфазного короткого замыкания, кА:

Ток трехфазного короткого замыкания

Ударный ток трехфазного к.з., кА:

Ударный ток трехфазного к.з.

Ток однофазного короткого замыкания, кА:

Ток однофазного короткого замыкания

Рассчитав токи короткого замыкания, можно приступать к выбору защитных аппаратов.

По такому принципу я сделал свою новую программу для расчета токов короткого замыкания. При помощи программы все расчеты можно выполнить значительно быстрее и с минимальным риском допущения ошибки, которые могут возникнуть при ручном расчете. Пока это все-таки beta-версия, но тем не менее думаю вполне рабочий вариант программы.

Внешний вид программы:

Программа для расчета токов к.з.

Ниже в программе идут все необходимые таблицы для выбора нужных параметров трансформатора и питающей линии.

Также в месте с программой я прилагаю образец своего расчета, чтобы быстро можно было оформить расчет и предоставить всем заинтересованным органам.

Стоит заметить, что у меня появилась еще одна мелкая программа – интерполяция. Удобно, например, находить удельную нагрузку квартир при заданных значениях.

Жду ваших отзывов, пожеланий, предложений, уточнений. Продолжение следует. будет еще видеообзор измененной версии. Нужно ли учитывать сопротивления коммутационных аппаратов при расчете к.з.?

Источник

Расчет тока короткого замыкания в сети 0,4 кВ

Введение

В соответствии с пунктом 3.1.8. ПУЭ электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения при этом указано что защита должна проверяться по отношению наименьшего расчетного тока короткого замыкания (далее — тока КЗ) к номинальному току плавкой вставки предохранителя или расцепителя автоматического выключателя. (Подробнее о выборе защиты от токов короткого замыкания читайте статью: Расчет электрической сети и выбор аппаратов защиты)

В сетях 0,4 кВ с глухозаземленной нейтралью наименьшим током КЗ является ток однофазного короткого замыкания методика расчета которого и приведена в данной статье.

Основные понятия и принцип расчета

Сама формула расчета тока короткого замыкания проста, она выходит из закона ома для полной цепи и имеет следующий вид:

  • Uф — фазное напряжение сети (230 Вольт);
  • Zф-о — полное сопротивление петли (цепи) фаза-нуль в Омах.

Что такое петля фаза-нуль (фаза-ноль)? Это электрическая цепь состоящая из фазного и нулевого проводников, а так же обмотки трансформатора к которым они подключены.

В свою очередь сопротивление данной электрической цепи и называется сопротивлением петли фаза нуль.

Как известно есть три типа сопротивлений: активное (R), реактивное (X) и полное (Z). Для расчета тока короткого замыкания необходимо использовать полное сопротивление определить которое можно из треугольника сопротивлений:

Примечание: Сумма полных сопротивлений нулевого и фазного проводников называется полным сопротивлением питающей линии.

Рассчитать точное сопротивление петли фаза-нуль довольно сложно, т.к. на ее сопротивление влияет множество различных факторов, начиная с переходных сопротивлений контактных соединений и сопротивлений внутренних элементов аппаратов защиты, заканчивая температурой окружающей среды. Поэтому для практических расчетов используются упрощенные методики расчета токов КЗ одна из которых и приведена ниже.

Справочно: Расчетным путем ток короткого замыкания определяется, как правило, только для новых и реконструируемых электроустановок на этапе проектирования электрической сети и выбора аппаратов ее защиты. В действующих электроустановках наиболее целесообразно определять ток короткого замыкания путем проведения соответствующих измерений (путем непосредственного измерения тока КЗ, либо путем косвенного измерения, т.е. измерения сопротивления петли-фаза-нуль и последующего расчета тока КЗ).

Методика расчета тока кз

1) Определяем полное сопротивление питающей линии до точки короткого замыкания:

  • Rл — Активное сопротивление линии, Ом;
  • Xл — Реактивное сопротивление линии, Ом;

Примечание: Расчет производится для каждого участка линии с различным сечением и/или материалом проводника, с последующим суммированием сопротивлений всех участков (Zпл=Zл1+Zл2+…+Zлn).

Активное сопротивление линии определяется по формуле:

  • Lфо — Сумма длин фазного и нулевого проводника линии, Ом;
  • p — Удельное сопротивление проводника (для алюминия — 0,028, для меди – 0,0175), Ом* мм 2 /м;
  • S — Сечение проводника, мм 2 .

Примечание: формула приведена с учетом, что сечения и материал фазного и нулевого проводников линии одинаковы, в противном случае расчет необходимо выполнять по данной формуле для каждого из проводников индивидуально с последующим суммированием их сопротивлений.

Реактивное сопротивление линии определяется по формуле:

2) Определяем сопротивление питающего трансформатора

Сопротивление трансформатора зависит от множества факторов, таких как мощность, конструкция трансформатора и главным образом схема соединения его обмоток. Для упрощенного расчета сопротивление трансформатора при однофазном кз (Zтр(1)) можно принять из следующей таблицы:

3) Рассчитываем ток короткого замыкания

Ток однофазного короткого замыкания определяем по следующей формуле:

  • Uф — Фазное напряжение сети в Вольтах (для сетей 0,4кВ принимается равным 230 Вольт);
  • Zтр(1) — Сопротивление питающего трансформатора при однофазном кз в Омах (из таблицы выше);
  • Z пл — Полное сопротивление питающей линии (цепи фаза-ноль) от питающего трансформатора до точки короткого замыкания в Омах.

Расчёт однофазной сети

Расчет токов коротких замыканий в электроэнергетических системах однофазного напряжения допускает проведение упрощённых вычислений. Обычно, электроприборы тока однофазного не потребляют много электричества, и для надёжной защиты квартиры или дома от возникновения короткого замыкания, достаточно установить автоматический выключатель рассчитанный на величину срабатывания, равную 25 А.

Если требуется осуществить приблизительный расчёт однофазного короткого замыкания, то его производят по формуле:

где Uf — напряжение фазы. Zt — сопротивление трансформатора, при возникновении КЗ. Zc — сопротивление между фазным и нулевым проводником. Ik — однофазный ток короткого замыкания.

Вычисление параметров КЗ в однофазной цепи с использованием данной формулы производится с погрешностью до 10%, но в большинстве случаев этого достаточно для осуществления правильной защиты электрической сети.

Основным затруднением для получения данных рассчитанных по этой формуле, является сложность в получении значения Zc.

Если параметры проводника известны и переходные сопротивления также определены, то сопротивление между фазным и нулевым проводником рассчитывается по формуле:

где: rf — активное сопротивление фазного провода, Ом; rn — активное сопротивление нулевого провода, Ом; ra — суммарное активное сопротивление контактов цепи фаза-нуль, Ом; xf» — внутреннее индуктивное сопротивление фазного провода, Ом; xn» — внутреннее индуктивное сопротивление нулевого провода, Ом; x’ — внешнее индуктивное сопротивление цепи фаза-нуль, Ом.

Таким образом подставляя известные значения в формулы приведённые выше, легко найдём ток короткого замыкания для однофазной сети.

Вычисление параметров КЗ в однофазной сети осуществляется в такой последовательности:

  1. Выяснится параметры питающего трансформатора или реактора.
  2. Определяются параметры используемого проводника.
  3. Если электрическая схема слишком разветвлена, то её следует упростить.
  4. Определяется полное сопротивление можду «фазой» и «0».
  5. Вычисляется полное сопротивление трансформатора или реактора, если данное значение нельзя получить из документации к источнику питания.
  6. Значения подставляются в формулу.

Высокий ток КЗ – это хорошо или плохо?

Как я показал на графике ранее, чем дальше место замыкания от источника питания, тем меньше будет ток короткого замыкания, поскольку сопротивление линии будет больше. Высокий ток КЗ обычно бывает в тех местах электросети, которые расположены наиболее близко к подстанции, а кабельные линии имеют большое сечение проводов.

В питающих сетях с напряжением 0,4 кВ относительно высокими считаются токи КЗ более 6кА, а токи КЗ выше 15 кА практически не встречаются. Итак, что мы имеем:

Минусы низкого тока КЗ

  • большое падение напряжения при достаточно мощной нагрузке;
  • как правило, низкое напряжение на электроприборах. При этом стабилизатор поможет не всегда;
  • нестабильность напряжения на электроприборах в зависимости от времени суток или времени года. По нормам на напряжение и его допуски я провёл расследование;
  • высокое (вплоть до бесконечности) время срабатывания автоматических выключателей при КЗ на землю (работает только тепловой расцепитель);
  • необходимость установки автоматических выключателей с характеристикой отключения “В” с целью более вероятного срабатывания электромагнитного расцепителя при КЗ. Этот спорный вопрос обсуждается в моей статье на Дзене Зачем ставить автоматы с характеристикой “В”;
  • обязательная установка УЗО – при этом, кроме своих “основных” обязанностей (отключение питания при высоком токе утечки, а также для защиты человека при прямом и косвенном прикосновении), УЗО выполняет функцию защиты от КЗ на землю (ПУЭ 1.7.59, 7.1.72).

Плюсы низкого тока КЗ

  • можно устанавливать дешевые автоматические выключатели с низкой номинальной наибольшей отключающей способностью (Icn = 4500 А);
  • сравнительно легко можно обеспечить селективность между вводным и нижестоящим автоматами. Но нужен расчет и измерение точного значения тока КЗ,
  • низкий пусковой ток электродвигателей и другой инерционной нагрузки. Статья Что такое пусковой ток, как его измерить и посчитать.

Минусы высокого тока КЗ

  • невозможность обеспечить селективность между вышестоящими и нижестоящими автоматами. Выход – установка рубильника либо селективного по времени автоматического выключателя;
  • необходимость установки АВ с высокой номинальной наибольшей отключающей способностью (Icn = 6000, 10000 А и т.д.). Отключающая способность должна быть выше, чем ток КЗ в начале защищаемого участка (ПУЭ п. 3.1.3);
  • большие негативные последствия при возникновении КЗ.

Плюсы высокого тока КЗ

  • легко гарантировать стабильное напряжение на нагрузке и вообще качество электроэнергии;
  • имеется перспектива подключения новых потребителей и увеличения нагрузки;
  • гарантированное отключение линии при КЗ.

Резюмируя плюсы и минусы, можно сказать, что значение тока КЗ – палка о двух концах. В бытовом секторе ток КЗ часто бывает низким, и его стараются увеличить, прокладывая новые линии с высоким сечением проводов и устанавливая новые трансформаторные подстанции. В серьезной энергетике наоборот, применяют методы по уменьшению тока КЗ.

24 Условия параллельной работы трансформаторов:

4.30. Допускается параллельная работа трансформаторов (автотрансформаторов) при условии, что ни одна из обмоток не будет нагружена током, превышающим допустимое значение силы тока для данной обмотки.

Параллельная работа трансформаторов допускается при следующих условиях:

1) группы соединений обмоток одинаковы;

2) соотношение мощностей трансформаторов не более чем 1:3;

3) коэффициенты трансформации отличаются не более чем на плюс 0,5 % и не меньше чем на минус 0,5 %;

4) напряжения КЗ отличаются не более чем на плюс 10 % и не меньше чем на минус 10 % среднеарифметического значения напряжения КЗ

трансформаторов, которые включаются на параллельную работу;

5) проведено фазирование трансформаторов.

Для выравнивания нагрузки между параллельно работающими трансформаторами с разными напряжениями КЗ допускается в небольших пределах изменять коэффициент трансформации путем переключения ответвлений при условии, что ни один из трансформаторов не будет перегружен.

Определение режима. Холостым ходом трансформатора называется такой режим его работы, при котором к первичной обмотке подведено синусоидальное напряжение u1, а вторичная обмотка разомкнута и ток в ней равен нулю. Принципиальная схема однофазного трансформатора при холостом ходе изображена на рис.7.6. В этом режиме трансформатор подобен дросселю с замкнутым ферромагнитным магнитопроводом.

Необходимость изучения данного режима заключается в том, что одновременно с определением основных параметров трансформатора (коэффициента трансформации, тока холостого хода, потерь в стали магнитопровода) возможно в сочетании с параметрами, полученными при другом крайнем режиме — коротком замыкании, охарактеризовать работу трансформатора под нагрузкой и наиболее точно определить коэффициент полезного действия.

Рисунок 7.6 — Схема трансформатора при холостом ходе

Принцип действия в режиме холостого хода. Под действием приложенного напряжения u1 в первичной обмотке трансформатора имеет место небольшой ток холостого хода i10 = i, обычно не превышающий (3-10%) от номинального тока в первичной обмотке, т.е. его действующее значение I£(0,03…0,1)I1н. Этот ток создает МДС первичной обмотки i×w1, которая обусловливает в замкнутом магнитопроводе переменный основной магнитный поток трансформатора Ф и небольшой переменный поток рассеяния первичной обмотки ФS1, замыкающийся вокруг первичной обмотки по воздуху.

Основной поток Ф наводит в первичной обмотке трансформатора ЭДС самоиндукции e1, а во вторичной обмотке — ЭДС взаимоиндукции e2. Поток рассеяния создает в первичной обмотке ЭДС eS1, называемую электродвижущей силой рассеяния. Так как основной поток Ф замыкается по магнитопроводу, а поток рассеяния ФS1 в основном по воздуху, то основной поток будет во много раз больше потока рассеяния (Ф>>ФS1), следовательно, и ЭДС, наводимые этими потоками в первичной обмотке, будут тоже существенно различаться по величине (E1>>ES1).

Расчет токов КЗ для трехфазных сетей

Для того чтобы определить ток трехфазного короткого замыкания в соответствующих сетях, следует обязательно учитывать специфику возникновения и развития этого процесса. Прежде всего, это индуктивность, возникающая в замкнутом проводнике, из-за чего ток трехфазного КЗ изменяется не мгновенно, а нарастает постепенно в соответствии с определенными законами.

Точность производимых вычислений зависит в первую очередь от расчетов основных величин, вставляемых в формулу. С этой целью используются дополнительные формулы или специальное программное обеспечение, выполняющее сложнейшие вычислительные операции за очень короткое время.

Если же расчеты в трехфазных сетях выполняются ручным способом, в таких случаях нужные результаты про ток КЗ формула, приведенная ниже, позволяет определить с достаточно точными показателями:

Iкз = Uc/(√3*Хрез) = Uc /(√3*(Хсист + Хвн)), в которой Хвн является сопротивлением между шинами и точкой КЗ, Хсист – это сопротивление во всей системе относительно шин источника напряжения, Uc – напряжение на шинах в данной системе.

При отсутствии какого-то из показателей, его значение определяется с использованием дополнительных формул или программ. Если же расчеты трехфазного КЗ производятся для сложных сетей с большим количеством разветвлений, в этом случае основная схема преобразуется в схему замещения, где присутствует лишь один источник электроэнергии и одно сопротивление.

Сам процесс упрощения производится в следующем порядке:

  • Складываются все показатели сопротивлений, подключенных параллельно в данной цепи.
  • Далее суммируются все сопротивления, подключенные последовательно.
  • Результирующее сопротивление Хрез определяется как сумма всех подключенных параллельных и последовательных сопротивлений.

Расчеты токов двухфазного короткого замыкания выполняются с учетом отсутствия у них симметричности. У них нет нуля, а присутствую токи, протекающие в прямом и обратном направлении. Таким образом, ток двухфазного КЗ рассчитывается последовательно, по отдельным формулам, используемым для каждого показателя.

Взаимосвязь короткого замыкания и силы тока

Рассмотрев физику процесса, можно с большей точностью установить взаимную связь силы тока и короткого замыкания в различных ситуациях. Любое устройство или оборудование, подключенное к источнику тока, создает ситуацию, близкую к короткому замыканию. Каждый прибор обладает сопротивлением и берет на себя всю нагрузку, за счет чего и обеспечивается его нормальная работа. Однако, при заметном снижении сопротивления, сила тока сразу же заметно возрастет. Взаимосвязь между напряжением, сопротивлением и силой тока определяется законом Ома.

Для участка цепи существует упрощенная формула, которая будет выглядеть следующим образом: I=U/R. В ней соответственно I будет силой тока, U – сетевым напряжением и R – электрическим сопротивлением. Проводники на этом участке условно имеют однородную структуру, а сама цепь дополнена резистором. Параметры источника тока в расчет не берутся.

В самом упрощенном варианте ток при КЗ можно вычислить следующим образом: Iкз = Е/r, где Е – ЭДС источника тока, r – сопротивление нагрузки. Из этой формулы хорошо видно, как при сниженном сопротивлении будет расти сила тока. Сама по себе данная ситуация не представляет какой-либо угрозы, но здесь дополнительно вступает в действие закон Джоуля-Ленца. Он указывает на выделение тепла во время течения по проводнику электрического тока и определяется не только количественной, но и временной характеристикой. Суть этого закона заключается в том, что с повышением силы тока за единицу времени будет выделено и большее количество теплоты.

Сила тока КЗ батареи

Все положения, рассмотренные выше, подходят и к случаям короткого замыкания источников питания. Типичным примером служит аккумуляторная батарея, в состав которой входит отрицательный электрод – анод и положительный – катод. Один от другого их отделяет твердый или жидкий электролит. Происходящие внутри устройства химические реакции, формируют электрический заряд, обеспечивающий работу подключенного прибора.

По сути, батарею можно считать своеобразным участком цепи, на которых распространяются все установленные правила. Следовательно, нарушенная изоляция, также приводит к короткому замыканию и последующим процессам. Многократный рост силы тока приводит к выделению тепла, под действием которого источник электроэнергии перегревается и разрушается, с одновременным закипанием и разбрызгиванием электролита.

Причины возникновения

Считается, что короткое замыкание (КЗ) — явление случайное, которое может произойти в любое время. Существует ряд прямых и косвенных причин, приводящих к этому негативному событию. К ним относятся:

  1. В процессе длительной эксплуатации большой износ энергетических систем или бытовой электрической сети. Провода со временем теряют качество изоляции, что приводит к непреднамеренным соединениям. Проверяется такая ситуация в местах соединения электрической проводки по степени ее нагрева. Если происходит большой нагрев проводников, значит, где-то произошло нарушение изоляции.
  2. Часто причиной короткого замыкания считается удар молнии в высоковольтную линию. Происходит кратковременное перенапряжение сети с последующим замыканием. Если даже молния ударила рядом с линией, все равно это вызывает ионизацию воздуха, что приводит к увеличению электрической проводимости. Вследствие чего образуется дуга, соединяющая линии электрических передач.
  3. В бытовых условиях происходит механическое повреждение изоляции. Особенно часто такая ситуация возникает во время проведения ремонта.
  4. Возможно попадание на токоведущие элементы посторонних металлических предметов. Такая ситуация говорит о неудовлетворительном уходе за электрическим оборудованием.
  5. Подключение к сети неисправных приборов, у которых низкое внутреннее сопротивление.

Вам это будет интересно Описание принципиальной электрической схемы с примером

Добавить комментарий