Автомобили на водороде против электромобилей, обзор

Содержание

Немного о доверчивости и наивности

Некоторые предприимчивые дельцы предлагают на продажу водородный генератор на авто. Рассказывают про обработку лазером поверхности электродов или про уникальные секретные сплавы, из которых они сделаны, специальные катализаторы воды, разработанные в научных лабораториях мира.

Всё зависит от способности мысли таких предпринимателей к полёту научной фантазии. Доверчивость может сделать вас за ваши же средства (иногда даже не малые) владельцем установки, у которой через два месяца эксплуатации разрушатся контактные пластины.

Если уж вы решили таким способом экономить, то лучше собирать установку самостоятельно. По крайней мере, не на кого потом будет пенять.

С экранов телевизоров нам заявляют, что количество нефти стремительно уменьшается, и вскоре бензиновые машины отойдут в далёкое прошлое. Вот только это не совсем верно.

Действительно, количество разведанных запасов нефти не очень велико. В зависимости от степени потребления их может хватить на период от 50 до 200 лет. Но в этой статистике не учитываются до сих пор неразведанные места нефтедобычи.

В действительности нефти на нашей планете более чем достаточно. Другой вопрос, что сложность её добычи постоянно возрастает, а значит, растёт и цена. К тому же нельзя списывать со счетов экологический фактор. Выхлопные газы сильно загрязняют среду и с этим нужно что-то делать.

Современная наука создала множество альтернативных источников энергии вплоть до двигателя ядерного распада в ваших машинах. Но большинство из этих технологий пока что представляют собой концепты без возможности реального применения. По крайней мере, так было до недавнего времени.

С каждым годом машиностроительные компании выпускают всё больше машин, работающих на альтернативных источниках питания. Одним из самых эффективных решений в данном контексте является водородный двигатель от бренда «Тойота». Он позволяет полностью забыть про бензин, делая автомобиль экологичным и дешёвым транспортом.

Преимущества и недостатки

С практической точки зрения все плюсы и минусы водородных силовых агрегатов в условиях современного автомобилестроения очевидны и обусловлены их техническими характеристиками. К неоспоримым преимуществам относятся следующие факторы:

  • абсолютно бесшумная работа;
  • высокие показатели экологической чистоты;
  • очень достойный коэффициент полезного действия;
  • меньшее количество токсичных выбросов в атмосферу;
  • гарантированно высокая мощность и производительность;
  • конструктивная простота и отсутствие ненадёжных систем топливной подачи.

Среди значимых недостатков можно выделить сложность и дороговизну получения топлива в промышленных объёмах, отсутствие регламента хранения и транспортирования. Вес машины естественным образом заметно увеличится, что обусловлено необходимостью установки на транспортное средство тяжёлых токовых преобразователей и мощных аккумуляторных батарей.

Специалисты отмечают также высокую опасность использования водорода, связанную с риском появления взрыво- и пожароопасной ситуации при взаимодействии с разогретым выпускным коллектором и моторными маслами. Сегодня цена одного килограмма водорода составляет порядка 8-9 американских долларов, поэтому при расходе 1,2-1,3 кг на 100 км, средняя стоимость такой поездки вполне сопоставима с эксплуатацией традиционного бензинового автомобиля.

Высокий уровень экологичности

Конечно, невысокая степень загрязнения присутствует, но из-за наличия в механизме автомобиля масла. Даже при добавлении водорода в обычное топливо производительность повышается на 20%. На 5 кг водородного топлива автомобиль проезжает до 500 км. Ученые считают водород единственным возобновляемым источником энергии.

При его неоспоримых преимуществах на сегодняшний день недостатков намного больше, которые в основном связаны с конструктивом двигателя:

  • Летучесть водорода. Заправить автомобиль с ДВС на водороде возможно только на заправке. Дозаправиться от другого автомобиля или из канистры по дороге не получится.
  • Взрывоопасность и пожароопасность. Всем известна катастрофа дирижабля «Гинденбург», который от одной искры загорелся в полете: из 97 человек, находящихся на борту, погибла треть.
  • Высокая стоимость топливных элементов и водородного двигателя, что, в свою очередь, увеличивает стоимость автомобиля. Аналог с водородным двигателем стоит в два раза дороже. Автомобиль на базе водородного двигателя обслуживать в 100 раз дороже, чем обычный двигатель.
  • Водородный двигатель занимает большой объем. В грузовиках и автобусах это не создает никаких неудобств, но в легковых автомобилях уменьшается объем багажного отделения.

Водородный двигатель – это не фантастика. Например, Honda, Toyota и Hyndai наладили линию по производству автомобилей с двигателями на базе водорода и плотно оккупировали рынок: Toyota Mirai (2015), Honda FCX Clarity (2008), Hyundai ix35 Fuel Cell. В середине декабря прошлого года Audi объявило о своем решении выпустить новый концепт на водороде – Q6 H-Tron.

Несмотря на все недостатки, водород – это единственный возобновляемый и неограниченный ресурс на планете. Для того чтобы автомобили с таким ДВС получили широкое распространение, ученым и разработчикам надо будет решить, как устранить негативные характеристики и уменьшить стоимость механизма, а государствам наладить инфраструктуру, чтобы машины на водороде перестали быть редкостью на дорогах.

Недостатки водородных моторов

Проект провалился. Дело в том, что даже при минимальных переделках конструкции автомобиля, необходимо было устанавливать водородный бак, который занимал половину багажника. Кроме того, инфраструктура водородных заправок в мире насчитывает единицы точек, где можно заправить авто водородом. Добывать водород своими руками не имеет никакого смысла, масштабы не те, да и заправочное оборудование должно быть идеально герметичным.

Ученые прогнозируют более динамичное развитие инфраструктуры водородных заправок только к 2030 году, не ранее. Получать чистый водород можно только двумя путями — либо методом электролиза, либо выделять его из природного газа, поскольку в природе чистого водорода не существует.

Перспектива получать водород из воды выглядит заманчиво, но инвесторы не стоят в очереди на финансирование постройки оборудования, необходимого для получения летучего газа из обычной воды. Разработки продолжаются, нефть потихоньку заканчивается, поэтому человечеству стоит задуматься об альтернативных видах топлива несколько активнее, пока не поздно. А пока, удачных всем дорог на наших дизельных и бензиновых автомобилях.

Модели с водородным двигателем

Работы по разработке и производству реально функционирующего прототипа инновационного автомобиля обходятся примерно в миллион долларов. Самые крупные автомобильные концерны располагают такими суммами, но крайне редко считают вложение средств в подобные проекты высокодоходным мероприятием.

Honda FCX Clarity

Модель имеет силовую установку в виде водородных топливных элементов. Лизинговые продажи стартовали в Америке 11 лет назад, а для заправки топливом разрабатывалась очень компактная по размерам энергетическая станция (Home Energy Station). Подсистема разгона и торможения в этом автомобиле оснащена эксклюзивным ионистором в виде супер-конденсатора без наличия традиционных «обкладок». Запас хода на одном заряде составляет 700 км. Розничная цена модели – почти 63 тысячи американских долларов.

Hyundai Tucson/ix35 FCEV

Внедорожник класса «К1» был запущен в серийное производство шесть лет назад. Модель, занявшая лидирующие позиции в области использования водородного топлива, отличается компактными размерами. Автомобиль оснащён силовой установкой, представленной двумя газовыми баллонами, которые заполняются сжатым водородом под давлением 700 атм. В динамике эта машина очень хороша, но оптимальный вариант – городской цикл езды.

Hyundai Nexo

Южнокорейская модель второго поколения водородных кроссоверов отличается не только новой платформой, но также лёгким кузовом, аккумуляторной батареей в багажнике и улучшенным строением топливных элементов. Объём трёх одинаковых по размерам баков составляет 52,2 л водорода. Модель была протестирована за Полярным кругом, где довольно легко подтвердила свою работоспособность в суровых климатических условиях.

Toyota Mirai FCV

Японский водородный экомобиль – это новая эра автомобилестроения. Для четырёхдверного седана характерно наличие заметно улучшенной силовой установки, модернизированных и усовершенствованных агрегатов. В модели Тойота Мирай установлены высокоэффективные водородные топливные элементы FC stack и синхронный электрический двигатель переменного тока. Запас хода на одном заряде двух заправочных баллонов составляет 650 км.

Водород для тяжеловеса

Два последних года запомнились важными «водородными» новостями. Поговорим об известном проекте электрического грузовика Nikola One, представленного американской компанией Nikola Motor в 2016 году. История эта получила продолжение.

Итак, Nikola One. Грузовой электрокар, тягач с электроприводом и батареей емкостью 320 кВт·ч. На борту – собственная автономная электростанция. Электроэнергию вырабатывает система водородных топливных элементов.

Nikola One для американского рынка

Как заявил производитель, этот грузовик имеет автономный запас хода почти 1200 миль, по-нашему – 2000 км. И движется он с нулевой эмиссией отработавших газов – их просто нет, этих газов.

Изначально его планировали оснащать «удлинителем хода» – газотурбинным бортовым генератором, но потом все же остановились на ТЭ. Правда, для некоторых рынков возможность использования газотурбинного генератора все же оставили.

Заявленные характеристики тягача существенно превышают показатели большинства электромобилей, но есть и сомнения – хватит ли энергии силовой установки для перемещения 35-тонных грузов? На этот вопрос ответит практика эксплуатации. Но тут возникает еще одна проблема: где брать водород в достаточном количестве для парка Nikola One?

Компоновка тягача Nikola на водороде: 1 – система охлаждения; 2 – два электрических
мотор-редуктора для привода передних колес; 3 – блок высоковольтной и управляющей
электроники; 4 – тяговая батарея; 5 – ресивер пневматической тормозной системы и бак
системы охлаждения батареи; 6 – электрохимический генератор (топливные элементы
на 300 кВт); 7 – баки с водородом; 8 – задний мост с электродвигателем; 9 – седло
Фото: https://www.automobile-propre.com

Главный исполнительный директор (Chief Executive Officer) компании Nikola Motors Тревор Милтон (Trevor Milton) заявил, что концепция электрического грузовика Nikola One будет опираться на собственную водородную инфраструктуру. Она раскинется по всей территории Соединенных Штатов, захватив частично и Канаду. Компания намерена строить электролизные установки и транспортировать водород на заправки.

Не так давно Nikola Motor обрела партнера – компанию Nel ASA. Эта фирма поставляет для Nikola оборудование, помогая создать самую большую водородную топливную сеть в мире. Достаточно сказать, что в ней будут действовать 16 электролизных станций, работающих по технологии H2Station.

Уже знакомый нам г-н Тревор Милтон заявил, что заказ на поставку первых двух станций на основе щелочных электролизеров компания Nel ASA уже выполняет. Остальные 14 станций получат путевку в жизнь в ближайшее время.

Скотт Перри, один из ведущих специалистов Nikola Motor, рассказал, что компания Nel ASA поставляет водород в более чем 80 стран с 1927 года. «Мы уверены, что с таким опытным партнером наш проект будет успешным», – с оптимизмом заключил он.

Первоначально каждая станция будет производить до 8 т водорода в день. Однако объем выпуска может быть увеличен до 32 т в день. Кстати, каждый грузовик Nikola ежедневно будет потреблять около 50–75 кг водорода.

Интересная подробность: Nikola Motor намерена предоставлять свои заправки всем водородным транспортным средствам, а не только грузовикам собственной марки.

Прошло немного времени, и компания Nikola заявила, что будет производить не один, а два тягача – Nikola One и Nikola Two. Вторая модель отличается в первую очередь кабиной. Если у Nikola One имеется спальный отсек, то Nikola Two оснащен лишь компактной кабиной для перевозок, но не для отдыха.

С точки зрения энергетики Nikola Two не отличается от Nikola One. За кабиной находятся баллоны с водородом для питания электрохимического генератора. Он вырабатывает электрическую энергию для мотор-редукторов суммарной мощностью более 1000 л. с. По информации производителя, разгон до 60 миль/ч занимает не более 30 секунд, а пробег на одной заправке водородом составляет 1200 миль. Заправка же займет не больше 15 минут.

Nikola Two также ориентирован на американский рынок

В конце ноября 2018 года компания представили третью модель водородного грузовика. Она так и называется – Nikola Tre («три» по-норвежски). Если Nikola One и Nikola Two адресованы американскому рынку, то бескапотный Nikola Tre будет работать в Европе.

Nikola Tre для европейского рынка

Технические характеристики Nikola Tre практически не отличаются от двух первых моделей. Силовая установка мощностью от 500 до 1000 л. с., крутящий момент до 2000 Нм, запас хода до 1200 миль, продолжительность заправки примерно 20 минут.

Решение первое: сжигать в цилиндрах

Первый патент на изобретение водородного автомобиля получил в 1807 году Франсуа Исаак де Риваз.

В 1860 году Этьен Ленуар запатентовал двигатель внутреннего сгорания, работающий на светильном газе. Водорода Н2 там было 50%, метана СН4 – 34%, оксида углерода СO – 8%, остальное составляли другие газы.

Двигатель Ленуара мощностью 12 л. с. получил распространение на локомотивах, судах, транспортных экипажах и др. Однако в последующие годы этот тип ДВС был вытеснен двигателем Отто.

Автор нашего журнала Александр Раменский рассказал, что в Советском Союзе работы по исследованию водорода в качестве моторного топлива начались в 1935 году. Они проводились в Московском механико-машиностроительном институте им. М. В. Ломоносова (MMМИ), ныне МГТУ им Н. Э. Баумана.

Практическое же применение водорода как моторного топлива началось в 1941 году в блокадном Ленинграде. Техник-лейтенант Б. И. Шелищ предложил использовать водород, «отработавший» в аэростатах, в качестве топлива для двигателей автомобиля ГАЗ-АА. История эта такова.

Автомобиль ГАЗ-АА на водороде

Заградительные аэростаты поднимались на высоту до 5 км и являлись надежным противовоздушным средством обороны города, не позволяя самолетам противника осуществлять прицельное бомбометание. Для опускания аэростатов, частично потерявших подъемную силу, требовалась большая мощность. Эта операция осуществлялась посредством механической лебедки, установленной на автомобиль ГАЗ-АА, двигатель которого и вращал лебедку. А сами водородные автомобили ГАЗ-АА включались в состав постов противовоздушной обороны (ПВО).

В блокадном Ленинграде было оборудовано несколько сотен постов ПВО, на которых использовались автомобили ГАЗ-АА, работающие на водороде.

В наши дни сторонником сжигания водорода в цилиндрах ДВС выступила фирма BMW. На ряде международных автосалонов компания продемонстрировала свое достижение в этой области – одноместный рекордный автомобиль BMW H2R.

Он оснащался хорошо известным 6-литровым 12-цилиндровым V-образным двигателем с системой Valvetronic – но адаптированным под питание водородом.

Максимальная мощность водородного двигателя составляет 210 кВт (285 л. с.). Для сравнения, у исходного варианта мотора V12 для BMW 760i она равна 327 кВт (445 л. с.). Как видно, потеря мощности получается значительной.

12-цилиндровый V-образный двигатель с системой Valvetronic, адаптированный под питание водородомОдноместный автомобиль BMW H 2 R с водородным ДВС

Представленный на фото водородный автомобиль имеет массу 1560 кг, развивает максимальную скорость 302,4 км/ч, а разгон до 100 км/ч занимает около 6 секунд.

Однако добиться идеального транспортного средства с точки зрения экологии при сжигании водорода в цилиндрах не получается. Отработавшие газы водородных BMW все же содержат некоторое количество токсичных веществ. Они образуются в результате химических реакций вследствие высокой температуры в камере сгорания.

И все же вариант BMW хорош тем, что конструкция автомобиля и двигателя в целом не меняется. Основные усилия направляются на создание принципиально новой топливной аппаратуры. При этом расходы на переоснащение производства не столь велики, как во втором случае. Об этом – в следующем разделе.

Давайте рассмотрим некоторые из причин, в том числе серьезные опасности, которые могут быть связаны с водородной энергетикой.

Первый минус. -Да, это правда, водород самый распространенный элемент во всей Вселенной, однако на самой Земле в чистом виде газообразный водород найти сегодня практически невозможно. Этот газ необычайно легок. Поэтому в чистом виде он очень быстро (почти моментально) поднимается к верхним слоям атмосферы и уходит дальше в безвоздушное пространство.

В подавляющем большинстве случаев атомы водорода связаны с другими типами атомов в разнообразные молекулы, которые образуют после этого различные вещества. Вот например, H2O, более известная нам всем, как вода, или тот же СН4, также известный, как метан, оба эти элемента содержат в себе молекулы водорода.

Поэтому получается, прежде чем водород может быть использован в качестве альтернативного топлива, он сначала должен быть извлечен из этих самых веществ, а затем уже переведен в особое состояние, то есть как правило, в тот самый сжиженный и необходимый нам вид.

На все эти действия потребуются очень большие затраты энергии, а значит и коллосальные материальные средства. К примеру, для извлечения H2 (водорода) из воды с помощью электролиза требуется большое количество электроэнергии, что на данный момент просто нерентабельно. По разным подсчетам стоимость 1 литра сжиженного водорода составляет примерно от $2 долларов и до 8 Евро, в зависимости от способа его добычи.

Следующим звеном в цепочке под номером два идет: -отсутствие развитой структурной сети самих водородных заправок. Стоимость оборудования для таких заправочных станций в разы выше, чем у обычной АЗС. Существует различные проекты для водородозаправляющих станций, как от классических АЗС, так и до частных минизаправок. При сегодняшнем развитии смежных технологий все эти проекты чрезвычайно дороги и относительно опасны.

Развитие сети водородных заправок дело будущих десятилетий. Именно столько должно пройти времени, чтобы стоимость их постройки была целесообразной.

Существуют ли опасности, которые связаны с наличием большого количества чистого водорода скопившегося в одном месте? Безусловно существует. Когда жидкий водород хранится в резервуарах, это безопасно, но стоит ему просочится в окружающую среду, как он моментально превращается в гремучую смесь (гремучий газ).

В плюсах мы уже отметили, что водородом можно заправлять автомобили с обычным двигателем внутреннего сгорания (в домашних условиях не повторять! ОПАСНО!!!), но однако, этот обычный двигатель проработает на чистом водороде не долго. Он быстро сломается. При сгорании водородной смеси выделяется большее количество тепла, чем при сгорании того же бензина, а это может привести под высокими нагрузками к перегреву клапанов и поршней двигателя. Помимо этого ,под воздействием высоких температур H2 (водород) может влиять на саму смазку в двигателе и на материалы из которых сделан мотор, что непременно приведет к повышенному износу рабочих частей агрегата.

Отсюда мы делаем неутешительный вывод: -без очень дорогостоящей модернизации ДВС, которая должна приспособить мотор к работе на этом виде горючего, использование водорода как топлива не приведет к ожидаемому результату.

А пока все построенные объекты для заправки автомобилей водородом скорее всего используются в качестве рекламного хода и для демонстрации возможностей будущего.

Топливные ячейки стоят на третьей позиции в качестве минусов. Эти вроде безопасные элементы тоже не избежали тернистого пути метода проб и ошибок. Как и с теми же заправочными станциями и с теми же двигателями ДВС, все упирается именно в стоимость применяемых на данный момент технологий.

Приведем один пример. В качестве катализатора в этих топливных элементах используется на данный момент платина. А теперь представляете друзья стоимость такой детали?!

Некоторые технологии для ДВС настолько дороги, что проще купить жене платиновое кольцо с бриллиантом, чем заменить сломавшуюся деталь в водородном автомобиле.

Хорошая новость в этом достаточно дорогом деле заключается в том, что ученные непрерывно день-изо-дня ищут замену этому драгоценному металлу. Разрабатываются все новые технологии, проходят тестирования новые современные материалы. В конечном итоге ученые надеются, что “топливные элементы будущего” могут существенно снизить себестоимость сегодняшних элементов в 1000 раз и более.

Выбор конструкции и сборка

На объем вырабатываемого газа влияет площадь электродов, которые лучше изготавливать из титана или нержавейки для большей долговечности. Выбирать приходится из трех типов конструкции:

  • Цилиндрический. Производительность до 0,7 л/мин актуальна для моторов не более 1,5 л объемом.
  • Ячеистый. Хорошая эффективность оборудования сочетается с высокой продуктивностью до 2 л/мин, что подойдет даже для грузовиков.
  • С пластинами открытого типа. Продуктивность газа регулируется количеством пластин. Востребован для длительно работающих агрегатов, дизелей.

Контролировать реакции помогает регулятор тока, не допускающий закипания. Накопитель должен быть из нержавейки с термодатчиком, манометром и амперметром. Для безопасности монтируется гидрозатвор на выходном патрубке из реактора в виде обратного клапана.

Источник

Интересные концепты гибридов

Автотехнологии постоянно совершенствуются, что позволяет автопроизводителям создавать диковинные концепт-кары. Мы решили отобрать следующие транспортные средства будущего:

  1. LF-SA. Кар от «Лексус» характеризуется компактностью и регулируемым рулем. Приборная панель сворачивается, а широкоугольный монитор выполнен в форме голограммы. В двухдверном автомобиле смогут поместиться 4 пассажира, но задние кресла тесные. LF-SA
  2. I3. Разработка городского электрокара от немецкого БМВ. Это хетчбэк с одной педалью, ускоряющей движение авто либо замедляющей его! Разгон до «сотни» занимает 4 секунды, а выброс выхлопных газов — нулевой. I3
  3. EXP 10 Speed 6. Это роскошная машина от «Бентли», укомплектованная сенсорным LCD-дисплеем. Отдельные детали салона авто напечатаны с помощью 3D-принтера. EXP 10 Speed 6
  4. F 015. Настоящий автомобиль будущего от «Мерседес». Пассажиры будут сидеть напротив друг друга, а руль в салоне отсутствует! Машиной управляет искусственный интеллект. Если на пути F 015 будет пешеход, «Мерседес» остановится и через динамики предложит ему не прекращать движения! F 015
  5. KWID. Машина французского производителя Рено выделяется оригинальным дизайном, наличием дрона и водительским местом посередине салона! Если владельцу авто хочется узнать, что творится далеко впереди на трассе, он может запустить электронного разведчика. KWID

Плюсы автомобиля на водороде

Начнем с главных достоинств Hyundai Nexo:

1. Автомобиль не только не загрязняет атмосферу вредными соединениями и газами, но даже способствует очищению воздуха. Как утверждают разработчики, созданная ими система фильтрации может вытянуть из обрабатываемого воздуха до 99,9 % вредных примесей. За час оборудование очищает несколько десятков килограмма воздуха — это «порция» более чем для 40 человек.

2. Уже проведены исследования, доказывающие, что 10 000 автомобилей, работающих на сжиженном водороде, заменяют собой в условиях крупного города порядка 600 000 взрослых деревьев.

3. Водород — один из самых распространенных элементов из периодической таблицы Менделеева. В это же время литий, необходимый для изготовления аккумуляторов электромобилей, сравнительно редок — производители уже ведут за элемент настоящие «торговые войны».

4. Ученым доступна новая методика перемещения и хранения водорода в машинах: используется модульная установка, позволяющая сохранять элемент в форме аммиака. Перед использованием на тех же кроссоверах «Хендай» оборудование преобразует аммиак обратно в водород.

5. Возможность покупки подержанного водородомобиля: в отличие от электрокара, его топливные элементы изнашиваются значительно медленнее, чем аккумуляторные батареи. Так, ресурс ячейки для протекания химических реакций — 250 тыс. км пробега.

Рекомендации по изготовлению

Зная технологию получения водородного топлива и обладая определенными навыками, в домашних условиях можно сделать водородный генератор своими руками. Сегодня существует несколько работоспособных схем, позволяющих создать такую установку. Причем в отличие от классического устройства, в самодельном электроды помещаются не в емкость с водой, а сама жидкость поступает в зазоры между пластинами. Перед началом проведения работ по изготовлению водородной установки своими руками следует внимательно изучить чертежи.

Выбор материалов

Чаще всего домашние мастера сталкиваются с проблемой выбора электродов. С созданием топливной ячейки ситуация более простая и сегодня существует два основных типа генераторов водорода — «мокрый» и «сухой». Для создания первого можно использовать любой контейнер, имеющий достаточный запас прочности и газонепроницаемости. Оптимальным выбором можно считать корпус от аккумулятора старого образца для легковой машины.

Лучшими электродами будут пластины (трубки) из нержавейки. В принципе можно использовать и черный металл, но он быстро подвергается коррозии и такие электроды требуют частой замены. Совершенно иначе дело обстоит при использовании высокоуглеродистых сплавов, легированных хромом. Примером такого материала является нержавейка марки 316L.

При использовании трубок, они должны подбираться так, чтобы при установке одного элемента в другой между ними был обеспечен зазор величиной не более одного миллиметра

Не менее важной деталью генератора водорода для автомобиля является ШИМ-генератор. Именно благодаря правильно собранной электросхеме можно регулировать частоту тока, а без этого добывать водород не представляется возможным. Для создания водного затвора (бабблера) можно использовать любую емкость, обладающую достаточным показателем герметичности

При этом ее желательно оснастить крышкой, которая плотно закрывается, но при возгорании ННО внутри сразу будет сорвана. Для предотвращения возврата газа Брауна в топливную ячейку, рекомендуется установить отсекатель между водным затвором и электролизером

Для создания водного затвора (бабблера) можно использовать любую емкость, обладающую достаточным показателем герметичности. При этом ее желательно оснастить крышкой, которая плотно закрывается, но при возгорании ННО внутри сразу будет сорвана. Для предотвращения возврата газа Брауна в топливную ячейку, рекомендуется установить отсекатель между водным затвором и электролизером.

Сборка устройства

Для создания кислородного генератора лучше выбрать «сухую» топливную ячейку, а электроды стоит изготовить из нержавейки. Именно она пользуется наибольшей популярностью среди домашних мастеров

Также важно придерживаться определенной последовательности действий:

По размеру генератора необходимо нарезать пластины из органического стекла или органита, которые будут использоваться в качестве боковых стенок. Оптимальными размерами для топливной ячейки являются 150х150 или 250х250 мм.
В корпусных деталях необходимо просверлить отверстия для установки штуцеров для жидкости, одно для ННО и 4 крепежных.
Из стали марки 316L изготавливаются электроды, размер которых должен быть на 10−20 мм меньше в сравнении с боковыми стенками. В одном из углов каждого электрода необходимо сделать контактную площадку для соединения их в группы, а также подключения к источнику питания.
Чтобы увеличить количество получаемого в электрогенераторе газа Брауна, электроды следует обработать наждачной бумагой с каждой стороны.
В пластинах сверлятся отверстия диаметром 6 мм (подача воды) и 8−10 мм (отвод газа). При расчете мест сверления необходимо учитывать месторасположение патрубков.
Сначала в пластины из оргстекла монтируются штуцера и хорошо герметизируются.
В одну из корпусных деталей устанавливаются шпильки, а затем укладываются электроды.
Электродные пластины отделяются от боковых стенок прокладками из паронита либо силикона. Аналогичным образом необходимо изолировать и сами электроды.
После установки последнего электрода монтируются уплотнительные кольца и генератор закрывается второй стенкой. Сама конструкция скрепляется с помощью гаек с шайбами

В этот момент крайне важно следить за равномерностью затяжки крепежных элементов и не допустить перекосов.
Топливная ячейка подключается к емкости с жидкостью и водному затвору.
После соединения групп электродов в соответствии с их полюсом, генератор подключается к ШИМ-генератору.

Водород как горючее

Первым делом хочется понять, что собой представляет двигатель на водороде. А для этого нам необходимо изучить сам водород как эффективный источник энергии, то есть альтернатива привычному нам топливу.

Каждый прекрасно знает, что в обычном двигателе с системой внутреннего сгорания, который работает на бензине, происходит смешивание топлива с воздухом. Затем эта смесь поступает внутрь цилиндров, где и сгорает. Это создаёт энергию для перемещения поршней, что и способствует в итоге движению ТС.

У водорода есть свои нюансы, которые проявляются в следующем:

  • когда сжигается смесь с использованием водорода, на выходе получается только обычный водяной пар;
  • на воспламенение водорода уходит меньше времени, чем в случае с дизельным или традиционным бензиновым топливом;
  • детонационная устойчивость вещества способствует увеличению степени сжатия;
  • показатели теплоотдачи состава превосходят топливовоздушную смесь на 250%;
  • водород является летучим газом, из-за чего он может проникать в малейшие полости и зазоры;
  • лишь некоторые металлы способны справиться с воздействием воспламеняющегося водорода;
  • такое топливо можно хранить в жидком или сжатом агрегатном состоянии;
  • если ёмкость получает пробой или небольшую трещину, всё топливо испаряется довольно быстро;
  • чтобы вступить в реакцию с кислородом, нижний уровень газа составляет 4%;
  • последняя особенность позволяет настраивать необходимые оптимальные режимы для двигателя за счёт дозировки консистенции.

Если принимать во внимание все рассмотренные особенности, можно с уверенностью сказать, что вариант с использованием чистого водорода в обычном ДВС невозможен. Чтобы добиться желаемого, необходимо обязательно внести некоторые изменения в конструкцию, а также установить дополнительное оборудование

В чём опасность такого топлива

Водород позиционируется как взрывоопасное вещество. Именно это можно справедливо считать главной опасностью и проблемой всей технологии водородных моторов.

Сочетаясь с окислителем, в качестве которого выступает кислород, увеличивается риск воспламенения, и также возникает угроза взрывов. Исследования показатели, что на воспламенение водорода уходит около десятой доли энергии, требуемой при воспламенении топливовоздушной смеси. Фактически можно обойтись небольшой статической искрой, дабы водород вспыхнул.

Есть ещё одна опасность. Газ невидимый, и даже в процессе горения его практически незаметно. Невидимость огня усложняет возможность бороться с ним.

Нельзя забывать об опасности вещества для самого человека. Находясь в зоне с повышенной концентрацией газа в воздухе, может наступить удушье. А распознать наличие вещества крайне проблематично. Объясняется это отсутствием запаха и цвета. То есть человеческий газ не способен его разглядеть, а нос не может разнюхать.

В качестве последнего аргумента в пользу того, что водород действительно опасен, выступает факт его очень низкой температуры в случае нахождения в сжиженном состоянии. Контакт с таким веществом способен спровоцировать обморожение.

Добавить комментарий